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* Today, Lecture 9
Cooperative Communications * Interference
Lecture 9 " Impact
* Channel modeling of distributed channels including interference
= Empirical
= Geometry-based stochastic
Nicolai Czink, Thomas Zemen
May 19, 2011
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Interference — Strategies Interference metrics
Treat interference as noise Power
* Uncorrelated interference can be interpreted as ¢ SIR/SINR
increasing the noise floor * Influenced by path loss, shadowing, shadow correlation
* Correlated interference - correlated noise (beware!)
Channel
* Autocorrelation of interference (correlated noise)
Treat as part of the signal * Interference alignment
* Nullforming
* Successive interference cancellation System performance
* Cooperative strategies (helping other nodes) « Capacity under interference
* Throughput / BER / BLER under interference
= Additionally influenced by small scale fading correlation,
MIMO subspace alignment
~ftw ~ftw
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What Should Channel Models for Distributed Channels
Actually Take Care Of ?

Channel models for cooperative/distributed networks

* Most signal processing techniques have been developed
= Fori.i.d. Rayleigh channels

= Possibly with path-loss accounted for (SNR on each link depends on the Tx-Rx
distance)
= Often without shadowing and/or shadowing correlation

* However in real-world
= Shadowing is present and may be a correlated variable (impact on network ?)
= Shadowing and fast fading cannot be easily separated
= Both link ends can be mobile

Important to note

*  When modelling the multi-user channel correctly,
also interference is modelled correctly
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Empirical Channel Models

Deriving statistical relations from measurements

* Path loss vs. distance

* Large-scale fading (shadowing)
= Static vs. dynamic
= Correlation of shadowing(!)

* Small-scale fading
= Strong dependence on mobility
= Channel correlation for multi-antenna nodes
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Distributed Channel Modeling

Goals are to model
* Shadowing correlation properly
* Fading statistics for MS-MS channels

Different approaches can be used

* Empirical models
= Very direct if measurements are available
= General enough ?

* Stochastic models
= Very general
= Too simple ?

* Geometry-based models (COST, WINNER)
= Intermediate solution in terms of generalization
= Complex models
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Empirical Models of Distributed Channels (2)
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Modeling Path Loss and Static Shadowing Modeling Dynamic Shadowing

e Path loss is deterministic and distance-dependent Dynamic shadowing is the variation of the received power over a (longer)
¢ Static (= time constant) shadowing expresses that received powers time interval caused by the large-scale motion of terminals and
between links with the same range vary over different locations obstacles
* By different levels of obstruction (constant over frequency/space) * Itis a zero-mean lognormal variable
e By constructive/destructive interference of static multipaths if
nodes are stationary (frequency/space selectivity) We model
¢ Resulting implementation » Standard deviation of dynamic shadowing
d _ . . . ) . .
L=1Lo+1.75-10log,, [ — | + S, — 201log,, 5. Dynamlc. shadow'ln'g auto-correlation ov?r time . '
do * Correlation coefficient of large-scale fading between different links:
— Reference path loss Lo = Links with a common Rx or Tx

is LogN distributed, 5, = 4.4 dB
Reference distance dy

Obstruction shadowing @ is Rayleigh distributed in nomadic cases * Links with no nodes in common
Spatial fading @ is = 1 in mobile cases -
T1

~ftw “ftw
Nicolai Czink, Thomas Zemen 9 Nicolai Czink, Thomas Zemen 10
Dynamic Shadowing Correlation Modeling Small-Scale Fading
" [Scenario | Subset [ Small-scale fading is the quick amplitude variations of the received signal over
¢ [Talstatic [ all 0.00 time due to constructive/destructive interference of multipaths
06 all 0.16
los 121 Rx 029
double TX 020 In fixed-station to fixed-station links | is LogN distributed, std =6 dB
"2 | mobile [ Rx-Ix f 0.29 . L .
R disjoint | 0.06 * Ricean-distributed fading (K-factor)
02 121 Al |l - . d
A Kl = 16.90 — 5.25logy, - ) +{})
mobile — @o
06 Rx-Tx 0.25 . .
R emt [ 000 In mobile links
-0.8
’ 121 I’ﬂ‘{l}l( Sl * Second Order Scattering Fading (SOSF)
;”;511; Tx 037 | = Models smooth trade-off between Ricean and Double-Rayleigh fading
Ty |oxIx] 019 (also including Rayleigh fading)
disjomt [ 0.01

= Characteristic parameters are distributed following hybrid pdfs
* Some results

64 links — pairwise correlation

subset — joint Rx, joint Tx, joint Rx or joint Tx, disjoint no link jointly = One node moving: more Rice — Rayleigh
High correlation if joint node is mobile = Both nodes moving: more towards double-Rayleigh!
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Small-Scale Fading for Multi-Antenna Nodes:
Analytical Channel Models

Analytical channel models focus on modelling only the spatial structure (up
to now)

* Number of antennas is predetermined
* Well suited for testing signal processing algorithms

* The spatial structure is represented by the channel correlations matrix
= Can be estimated from measurements!
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Channel Correlation Matrix

The channel correlation matrix
Ry, = E{hh}, with h = vec(H)

sufficiently characterizes the spatial structure
of the channel. Size of Ry, : MrTMp x MpMp

Note: The vec(-) operator stacks
, vee(+)
the columns of a matrix
into a vector )
Underlying assumption: Rayleigh fading channel

h ~ CN'(0,Ry,)

If this assumption is not fulfilled, all the following models
will inevitably fail!
CN(p,R)... distributed circular symmetric complex gaussian with mean g+ and covariance R

“ftw
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Analytical Channel Models — Overview

Correlation-based models

[
L

* Full-correlation model:
H= unvec(R%l/ 2V€C(G)>

* Weichselberger model:
H = Ury(Qwe © G)UT,

* Kronecker model: / /
1/2 1/2\7
H=c- RRXG(RTX)

sJ9)aweled aiow

+ iid model (" canonical model”):
H=G

G ... iid Gaussian Matrix R ---ftW
Nicolai Czink, Thomas Zemen 14

Correlation-Based Analytical Models

Full-correlation model
* Very complex
* Most accurate

Weichselberger model
* Good approximation

* Good performance-complexity compromise

Kronecker model
» “Separates” channel into Tx and Rx sides
* Very limited validity

iid model
* Most simple
* No physical relevance
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Full-Correlation Model

Synthetic channel realizations consistent with channel correlation
matrix Ry, can be generated by

H = uvee(Ry/’g),  with g ~ CA(0,1),

where gis an iid white Gaussian random vector

Can be interpreted as a noise-coloring process:

h
g —>i R%I/Q unvec(-) —H

“ftw
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Kronecker Model — Definition

Full-correlation matrix has too many parameters
=> treat correlation independently at Tx and Rx:

* Transmit correlation matrix: RTx = E{HH H}
+ Receive correlation matrix: Rrx = E{H HH}

Channel correlation matrix is modelled by

1
\V tr{RRrx}

Channel realizations can be generated by

Ry ~ Rrx ® RTFX ® ... Kronecker matrix product

H=c RLGRYZ with G~cN(0,T)

“ftw
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iid Model

All elements of the channel matrix Hare

* complex Gaussian
* independent identically distributed (iid) ) uncorrelated

Channel correlation matrix is modelled as
Ry=p-1

Channel realizations can be generated by

H= 5 -G, with G~ CN(0,T)

Implications:
* no spatial structure is modelled
* only valid for (very) rich scattering environments

BUT
* Never observed in measurements — not even in those with strong

scattering “ftw
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Kronecker Model — Implications

* Kronecker model holds true only if channel can be separated into
Tx side and Rx side

* Rxdirections are independent of Tx directions

* Only satisfied for few antennas or large antenna spacing

local scatterers local scatterers
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Example of Analytically Modeling Spatial Interference

Can we model

R(inft)

Tx

given

R

“ftw
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Metrics
MIMO capacity under interference metric
I(Ro, Ry, 0%)
= log, det (I+ Ro(Ry + o3 1)71)
* Metrics has a unique minimum for V=U
—
and maximumfor V=U=[up -+ u]
- How to model points lying in between?
~ftw
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Impact of Channel Subspace Alignment

MIMO system model including interference

N;
y = H()XO +ZHle +n
i=1
Ro= HyH! =UAUY
N,
R;= Y HH' =vrv#
=1

Rate under interference:

I(Ro, Ry, 0%)
= logy det (I+ Ro(R; + o3 1)71)
= log, det (I + AURV|(031 + I‘)_1

Expectations lead to a METRIC rather than a rate

“ftw
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Multi-User MIMO Channel Model
What we assume as given:
* Ry= UAU from any suitable channel model
» T (SV profile of the interference)
3 0']2\]
> specific I(target), I(min) < I(target) < I(max)
What we model:
« V toreach I(tareet)
~ftw



Deterministic Subspace Model

We know that (™) < J(target) < p(max)
for (V=1) (V=1)

To model any target value in between, we need a smooth transition

fromUtoU

Smooth unitary projector fromUtot—]can be expressed by

[V(s) = (U u]

By that,
I(s) = I(Ro, V(s)I'V(s)™)

> Find s for I(*#&et) by bisection
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Geometry-Based Stochastic Modeling of
Distributed Channels

What are geometry-based stochastic models ?

Double-directional MIMO channel models

Based on clusters of interacting objects stochastically located in the
simulated environment

Clusters are assigned
= adirection with respect to the BS and the MS
= spreads in the angular and delay domains

Such models are

Antenna-independent

Parameterized by measurements in canonical environments (urban,
suburban, etc.)

Much more complex than empirical stochastic ones!
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Results: Capacity

Mutual information
(3]
o 5

0 0.2 0.4 0.6 0.8

* High correlation brings huge gains!
* Average correlation already significantly matter

* Low correlation have almost no impact ftW

The COST 2100 MIMO channel model

Model properties

A geometry-based stochastic multi-user MIMO channel model for
system simulation

Smoothly time variant, frequency selective
A generic all-rounder:

= 4 Main environments

= 22 specified scenarios

Not yet fully parametrised (specified = parametrised)
Not yet fully implemented
Not yet widely used (because of above reasons)

“ftw
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COST 2100 model overview

Environment

Carrier freq. —_

BS parameters

MS parameters COMSI-Il\-/Ig] 00

Antennas pars.

Path loss model channel » H (t) f)
model

Street pars.
Room size
Floors

-> All-inclusive model,
only few parameters to set manually!

“ftw
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Local Cluster(s)

Effect
* Large angular spread around the respective station

Occurrence
* Around the Mobile: ALWAYS
* Around the “other” station:
= Base station: only in certain environments
= Peer-to-Peer:  always ‘
= Ad hoc: always

Implementation

* Single scattering only
local cluster
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Three Kinds of Clusters

A

= Cluster types: y
- Local clusters

single-interaction clusters

- Single-interaction
clusters

- Multiple-interaction
clusters
(“twin-clusters”)

= Time-variance by
— MT movement
- visibility regions

. local cluster

X
“ftw
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Single-interaction clusters
Effect
* Far cluster (as in COST 259)
* Directive component in the channel
Occurrence single-interaction clusters

\

* All scenarios

Implementation
* Single scattering
* Angular position:
Gaussian distributed

* Distance from BS:
Exponentially distributed
* Active/Inactive:
Visibility region ftW
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Visibility region?
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, Twin cluster”

Multiple-interaction
cluster
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Multiple-interaction clusters

Effect
¢ Covers double or multi-bounce scattering

* Able to represent directional links not covered by
single scattering

Occurrence

* Indoor and Ad-hoc scenarios...
... but not really specified.

Implementation
¢ 2 Approaches:
= Angular spectrum approach
= “Twin-cluster” approach

“-multiple-interaction clusters

“ftw
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Modeling Multiple Users

Common cluster approach
* Some clusters are defined as common to Bs1

different BS
*  When the MS moves into the visibility of
a common cluster, a link to each BS is .
. i MS
established via the common cluster
* Shadowing correlation is therefore
realized intrinsically

BS 2
-> Path loss, dynamic shadowing, and small- .
scale fading are intrinsically modelled.

Circles are visibility regions of clusters
if overlapped clusters can be seen by both BS

“ftw
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Different Types of Common Clusters

Common cluster approach

ingle-BS Single-MS: no link commonngss Multi-BS Multi-MS: all-pass topology
BS

BS1
Cluster MBS-nMS-CC

Multi-BS Single-MS: m BS commonness BSm
BS1
mBS-CC
BSm

Single-BS Multi-MS: n MS commonness

(Y
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BS

nMS-CC

WINNER Multi-Link Channel Models (2)

Multi-user channel

* Correlation of LSPs is modeled as an exponential
decay wrt to the distance between users
(LSP large scale parameters)

Multi-cell channel

* Although some degree of correlation has been measured, the model
fixes the multi-cell LSP correlations to zero

Multi-hop channel
* Can be simulated using a combination of WINNER scenarios (e.g.

cellular + feeder) ftW

WINNER Multi-Link Channel Models

The WINNER model is a cluster-oriented drop-based model, each drop
corresponding to a random location of the MS

* 13 parameterised environments (indoor, outdoor, 021, LOS/NLOS)

* Over a given area, the large-scale parameters (LSPs) are defined as
constant

Large-scale parameters are correlated
- Inherent modelling of shadowing correlation!

* Different MS connected to the same BS (a)
 Different BS connected to a MS (b)

(a) ,//’f \
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Summary

Empirical models
* Based on parameter estimation from measurements
= Fixed bandwidth, fixed antenna patterns, ...
* Model features
= Path loss
= Shadowing (dynamic/static, correlated)
= Fast fading (distribution, multi-antenna properties)

Geometry-based stochastic models
* Models a randomly generated propagation environment
* Bandwidth, antenna patterns can be adjusted
* Need proper calibration with measurements (which is quite difficult)
* Two representative models: COST2100, WINNER
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