Cooperative Communications Lecture 9

Nicolai Czink, Thomas Zemen

May 19, 2011

Nicolai Czink, Thomas Zemen

Interference – Strategies

Treat interference as noise

- Uncorrelated interference can be interpreted as increasing the noise floor
- Correlated interference → correlated noise (beware!)

Treat as part of the signal

Nullforming

Nicolai Czink, Thomas Zemen

- Successive interference cancellation
- Cooperative strategies (helping other nodes)

Outline

- Today, Lecture 9
- Interference
 - Impact
- · Channel modeling of distributed channels including interference
 - Empirical
 - Geometry-based stochastic

Nicolai Czink

Interference metrics

Power

- SIR / SINR
 - Influenced by path loss, shadowing, shadow correlation

Channel

- Autocorrelation of interference (correlated noise)
- · Interference alignment

System performance

- · Capacity under interference
- Throughput / BER / BLER under interference
 - Additionally influenced by small scale fading correlation, MIMO subspace alignment

What Should Channel Models for Distributed Channels Actually Take Care Of?

Channel models for cooperative/distributed networks

- · Most signal processing techniques have been developed
 - For i.i.d. Rayleigh channels
 - Possibly with path-loss accounted for (SNR on each link depends on the Tx-Rx distance)
 - Often without shadowing and/or shadowing correlation
- However in real-world
 - Shadowing is present and may be a correlated variable (impact on network?)
 - Shadowing and fast fading cannot be easily separated
 - Both link ends can be mobile

Important to note

 When modelling the multi-user channel correctly, also interference is modelled correctly

Nicolai Czink. Thomas Zeme

Empirical Channel Models

Deriving statistical relations from measurements

- Path loss vs. distance
- · Large-scale fading (shadowing)
 - Static vs. dynamic
 - Correlation of shadowing(!)
- · Small-scale fading
 - Strong dependence on mobility
 - Channel correlation for multi-antenna nodes

Distributed Channel Modeling

Goals are to model

- · Shadowing correlation properly
- Fading statistics for MS-MS channels

Different approaches can be used

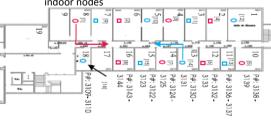
- Empirical models
 - Very direct if measurements are available
 - General enough ?
- · Stochastic models
 - Very general
 - Too simple ?
- Geometry-based models (COST, WINNER)
 - Intermediate solution in terms of generalization
 - Complex models

Nicolai Czink, Thomas Zemen

Empirical Models of Distributed Channels (2)

Stanford and FTW- UCL measurement campaigns

- Several types of experiments
 - Indoor-to-Indoor (I2I) static nodes
 - I2I single-mobile (Rx <u>or</u> Tx moving) and doublemobile (Tx <u>and</u> Rx moving)
 - O2I from a BS to distributed static or moving indoor nodes



Nicolai Czink, Thomas Zemer

Modeling Path Loss and Static Shadowing

- Path loss is deterministic and distance-dependent
- Static (= time constant) shadowing expresses that received powers between links with the same range vary over different locations
 - By different levels of **obstruction** (constant over frequency/space)
 - By constructive/destructive interference of static multipaths if nodes are stationary (frequency/space selectivity)
- Resulting implementation

$$L = L_0 + 1.75 \cdot 10 \log_{10} \left(\frac{d}{d_0} \right) + \bar{S}_o - 20 \log_{10} \bar{s}_s$$

- Reference path loss L_0

- Reference distance d_0

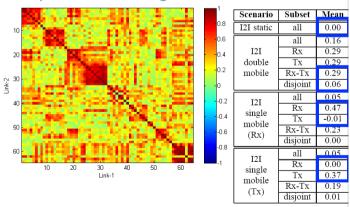
- Obstruction shadowing (S_a)

- Spatial fading (\bar{s}_s)

is Rayleigh distributed in *nomadic* cases is = 1 in mobile cases

is LogN distributed, $\sigma_{\bar{S}_{\alpha}}$ = 4.4 dB

Dynamic Shadowing Correlation



64 links – pairwise correlation subset – joint Rx, joint Tx, joint Rx or joint Tx, disjoint no link jointly High correlation if joint node is mobile

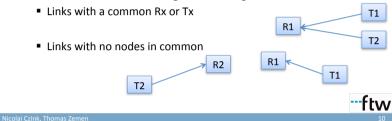
Modeling Dynamic Shadowing

Dynamic shadowing is the variation of the received power **over a** (longer) time interval caused by the large-scale motion of terminals and obstacles

• It is a zero-mean lognormal variable

We model

- Standard deviation of dynamic shadowing
- Dynamic shadowing auto-correlation over time
- Correlation coefficient of large-scale fading between different links:



Modeling Small-Scale Fading

Small-scale fading is the quick amplitude variations of the received signal over time due to constructive/destructive interference of multipaths

In fixed-station to fixed-station links

• Ricean-distributed fading (K-factor)

$$K|_{\mathrm{dB}} = 16.90 - 5.25 \log_{10} \left(\frac{d}{d_0}\right) + \sigma_K'$$

In mobile links

- Second Order Scattering Fading (SOSF)
 - Models smooth trade-off between Ricean and Double-Rayleigh fading (also including Rayleigh fading)
 - Characteristic parameters are distributed following hybrid pdfs
- · Some results
 - One node moving: more Rice Rayleigh
 - Both nodes moving: more towards double-Rayleigh!

is LogN distributed, std = 6 dB

Nicolai Czink, Thomas Zeme

Small-Scale Fading for Multi-Antenna Nodes: **Analytical Channel Models**

Analytical channel models focus on modelling only the spatial structure (up to now)

- Number of antennas is predetermined
- Well suited for testing signal processing algorithms
- The spatial structure is represented by the channel correlations matrix
 - Can be estimated from measurements!

Channel Correlation Matrix

The channel correlation matrix

$$\mathbf{R_h} = \mathrm{E}\{\mathbf{h}\mathbf{h}^H\}, \text{ with } \mathbf{h} = \mathrm{vec}(\mathbf{H})$$

sufficiently characterizes the spatial structure of the channel. Size of $\mathbf{R_h}$: $M_{\mathrm{T}}M_{\mathrm{R}} \times M_{\mathrm{T}}M_{\mathrm{R}}$

> Note: The $vec(\cdot)$ operator stacks the columns of a matrix into a vector

Underlying assumption: Rayleigh fading channel

$$\mathbf{h} \sim \mathcal{CN}(\mathbf{0}, \mathbf{R_h})$$

If this assumption is not fulfilled, all the following models will inevitably fail!

 $\mathcal{CN}(\mu,R)$... distributed circular symmetric complex gaussian with mean μ and covariance R

Analytical Channel Models - Overview

Correlation-based models

• Full-correlation model:

$$\mathbf{H} = \operatorname{unvec}\left(\mathbf{R}_{\mathbf{h}}^{1/2}\operatorname{vec}(\mathbf{G})\right)$$

Weichselberger model:

$$\mathbf{H} = \mathbf{U}_{\mathsf{Rx}}(\tilde{\mathbf{\Omega}}_{\mathsf{WB}} \odot \mathbf{G})\mathbf{U}_{\mathsf{Tx}}^T$$

• Kronecker model:

$$\mathbf{H} = c \cdot \mathbf{R}_{\mathsf{RX}}^{1/2} \mathbf{G} (\mathbf{R}_{\mathsf{TX}}^{1/2})^T$$

• iid model ("canonical model"):

$$\mathbf{H} = \mathbf{G}$$

G ... iid Gaussian Matrix

more parameters

icolai Czink. Thomas Zemer

Correlation-Based Analytical Models

Full-correlation model

- Very complex
- Most accurate

Weichselberger model

- Good approximation
- Good performance-complexity compromise

Kronecker model

- "Separates" channel into Tx and Rx sides
- · Very limited validity

iid model

- Most simple
- · No physical relevance

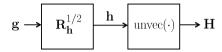
Full-Correlation Model

Synthetic $\mbox{\it channel realizations}$ consistent with channel correlation matrix R_h can be generated by

$$\mathbf{H} = \mathrm{unvec} \Big(\mathbf{R}_{h}^{1/2} \mathbf{g} \Big), \quad \text{with} \ \ \mathbf{g} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}),$$

where g is an iid white Gaussian random vector

Can be interpreted as a noise-coloring process:



k Thomas Zaman

Nicolai Czink, Thomas Zemen

Kronecker Model - Definition

Full-correlation matrix has too many parameters

- → treat correlation independently at Tx and Rx:
- Transmit correlation matrix: $\mathbf{R}_{\mathsf{Tx}} = \mathrm{E}\{\mathbf{H}^H\mathbf{H}\}$
- Receive correlation matrix: $\mathbf{R}_{\mathsf{Rx}} = \mathbb{E}\{\mathbf{H}\,\mathbf{H}^H\}$

Channel correlation matrix is modelled by

$$\mathbf{R_h} pprox rac{1}{\sqrt{\mathrm{tr}\{\mathbf{R}_{\mathsf{RX}}\}}} \mathbf{R}_{\mathsf{RX}} \otimes \mathbf{R}_{\mathsf{TX}}^T \hspace{1cm} \otimes ... \hspace{1cm} \mathsf{Kronecker} \hspace{1cm} \mathsf{matrix} \hspace{1cm} \mathsf{product}$$

Channel realizations can be generated by

$$\mathbf{H} = c \cdot \mathbf{R}_{\mathsf{RX}}^{1/2} \mathbf{G} \, \mathbf{R}_{\mathsf{TX}}^{1/2}, \quad \text{with} \quad \mathbf{G} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I})$$

iid Model

All elements of the channel matrix ${f H}$ are

- complex Gaussian
- independent identically distributed (iid)) uncorrelated

Channel correlation matrix is modelled as

$$\mathbf{R_h} = \rho \cdot \mathbf{I}$$

Channel realizations can be generated by

$$\mathbf{H} = \sqrt{\rho} \cdot \mathbf{G}$$
, with $\mathbf{G} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I})$

Implications:

- · no spatial structure is modelled
- only valid for (very) rich scattering environments

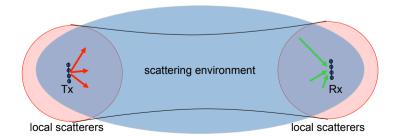
BUT

 Never observed in measurements – not even in those with strong scattering

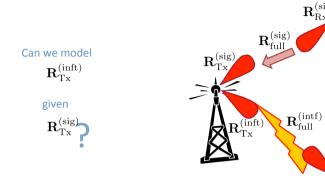
Nicolai Czink. Thomas Zemen

Kronecker Model – Implications

- Kronecker model holds true only if channel can be separated into Tx side and Rx side
- Rx directions are independent of Tx directions
- · Only satisfied for few antennas or large antenna spacing



Example of Analytically Modeling Spatial Interference



--ftw

Nicolai Caink Thomas Zomor

Metrics

MIMO capacity under interference metric

$$I(\mathbf{R}_0, \mathbf{R}_I, \sigma_N^2)$$

= log₂ det (I + R₀(R_I + \sigma_N^2 I)^{-1})

- Metrics has a unique minimum for $\ V=U$ and maximum for $\ V=\dot{\overline{U}}=[u_D\ \cdots\ u_1]$
- → How to model points lying in between?

--ftw

Impact of Channel Subspace Alignment

MIMO system model including interference

$$egin{aligned} \mathbf{y} &= \mathbf{H}_0 \mathbf{x}_0 + \sum_{i=1}^{N_i} \mathbf{H}_i \mathbf{x}_i + \mathbf{n} \ & \mathbf{R}_0 &= & \mathbf{H}_0 \mathbf{H}_0^\mathrm{H} &= \mathbf{U} \mathbf{\Lambda} \mathbf{U}^H \ & \mathbf{R}_I &= & \sum_{i=1}^{N_i} \mathbf{H}_i \mathbf{H}_i^\mathrm{H} &= \mathbf{V} \mathbf{\Gamma} \mathbf{V}^H \end{aligned}$$

Rate under interference:

$$\begin{split} &I(\mathbf{R}_0, \mathbf{R}_I, \sigma_N^2) \\ &= \log_2 \det \left(\mathbf{I} + \mathbf{R}_0 (\mathbf{R}_I + \sigma_N^2 \mathbf{I})^{-1} \right) \\ &= \log_2 \det \left(\mathbf{I} + \Lambda \mathbf{U}^H \mathbf{V} (\sigma_N^2 \mathbf{I} + \Gamma)^{-1} \mathbf{V}^H \mathbf{U} \right) \end{split}$$

Expectations lead to a METRIC rather than a rate

Nicolai Czink, Thomas Zemen

Multi-User MIMO Channel Model

What we assume as given:

- $\mathbf{R}_0 = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^H$ from any suitable channel model
- Γ (SV profile of the interference)
- σ_N^2
- ightarrow specific $I^{({
 m target})},\ I^{({
 m min})} \leq I^{({
 m target})} \leq I^{({
 m max})}$

What we model:

ullet ${f V}$ to reach $I^{
m (target)}$

Deterministic Subspace Model

- We know that $I^{(\min)} \leq I^{(\mathrm{target})} \leq I^{(\max)}$ for $(\mathbf{V} = \mathbf{U})$
- To model any target value in between, we need a smooth transition from \mathbf{U} to \mathbf{U}
- Smooth unitary projector from U to \overleftarrow{U} can be expressed by

 $\mathbf{V}(s) = (\overleftarrow{\mathbf{U}}\mathbf{U}^H)^s \mathbf{U}$

· By that,

$$I(s) = I(\mathbf{R}_0, \mathbf{V}(s)\mathbf{\Gamma}\mathbf{V}(s)^H)$$

 \rightarrow Find S for $I^{(\mathrm{target})}$ by bisection

Geometry-Based Stochastic Modeling of **Distributed Channels**

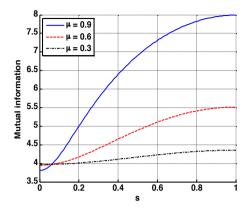
What are geometry-based stochastic models?

- Double-directional MIMO channel models
- Based on clusters of interacting objects stochastically located in the simulated environment
- · Clusters are assigned
 - a direction with respect to the BS and the MS
 - spreads in the angular and delay domains

Such models are

- Antenna-independent
- Parameterized by measurements in canonical environments (urban, suburban, etc.)
- · Much more complex than empirical stochastic ones!

Results: Capacity



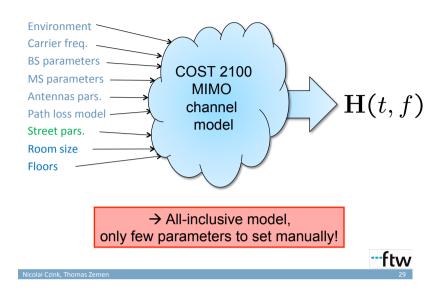
- · High correlation brings huge gains!
- · Average correlation already significantly matter
- Low correlation have almost no impact

The COST 2100 MIMO channel model

Model properties

- A geometry-based stochastic multi-user MIMO channel model for system simulation
- Smoothly time variant, frequency selective
- A generic all-rounder:
 - 4 Main environments
 - 22 specified scenarios
- Not yet fully parametrised (specified ≠ parametrised)
- Not yet fully implemented
- Not yet widely used (because of above reasons)

COST 2100 model overview



Local Cluster(s)

Effect

• Large angular spread around the respective station

Occurrence

Around the Mobile: ALWAYS

• Around the "other" station:

■ Base station: only in certain environments

Peer-to-Peer: alwaysAd hoc: always

Implementation

Single scattering only

Three Kinds of Clusters

Cluster types:
- Local clusters
- Single-interaction clusters
- Multiple-interaction clusters
("twin-clusters")

Time-variance by
- MT movement
- visibility regions

Single-interaction clusters

Effect

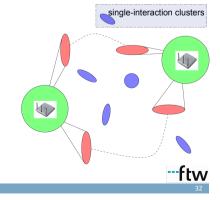
- Far cluster (as in COST 259)
- · Directive component in the channel

Occurrence

All scenarios

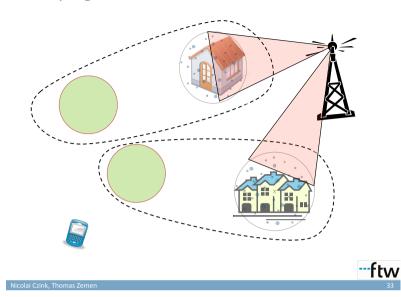
Implementation

- Single scattering
- Angular position: Gaussian distributed
- Distance from BS: Exponentially distributed
- Active/Inactive:
 Visibility region
 Nicolai Czink, Thomas Zemen

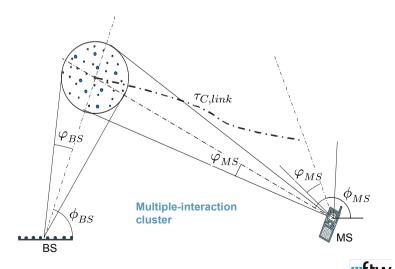


Nicolai Czink, Thomas Zeme

Visibility region?



"Twin cluster"



Multiple-interaction clusters

Effect

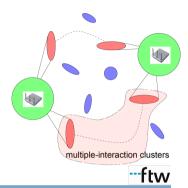
- Covers double or multi-bounce scattering
- Able to represent directional links not covered by single scattering

Occurrence

Indoor and Ad-hoc scenarios...
 ... but not really specified.

Implementation

- · 2 Approaches:
 - Angular spectrum approach
 - "Twin-cluster" approach



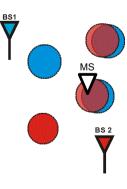
licolai Czink, Thomas Zemen

Modeling Multiple Users

Common cluster approach

- Some clusters are defined as common to different BS
- When the MS moves into the visibility of a common cluster, a link to each BS is established via the common cluster
- Shadowing correlation is therefore realized intrinsically
- → Path loss, dynamic shadowing, and small-scale fading are intrinsically modelled.

Circles are visibility regions of clusters if overlapped clusters can be seen by both BS



Different Types of Common Clusters

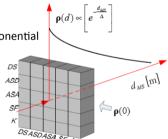
Common cluster approach Single-BS Single-MS: no link commonness Multi-BS Multi-MS: all-pass topology BS MS MS₁ Cluster mBS-nMS-CC Multi-BS Single-MS: m BS commonness VRn MSn MS mBS-CC Multi-BS Multi-MS: limited-pass topology BSm Single-BS Multi-MS: n MS commonness VR1 MS₁ MS₁ nMS-CC VRn MSr

WINNER Multi-Link Channel Models (2)

Multi-user channel

• Correlation of LSPs is modeled as an exponential decay wrt to the distance between users

(LSP large scale parameters)



Multi-cell channel

· Although some degree of correlation has been measured, the model fixes the multi-cell LSP correlations to zero

Multi-hop channel

• Can be simulated using a combination of WINNER scenarios (e.g. cellular + feeder)

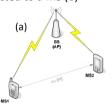
WINNER Multi-Link Channel Models

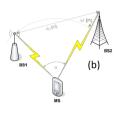
The WINNER model is a **cluster-oriented drop-based model**, each drop corresponding to a random location of the MS

- 13 parameterised environments (indoor, outdoor, O2I, LOS/NLOS)
- Over a given area, the large-scale parameters (LSPs) are defined as constant

Large-scale parameters are correlated

- → Inherent modelling of shadowing correlation!
 - Different MS connected to the same BS (a)
- Different BS connected to a MS (b)





Summary

Empirical models

- Based on parameter estimation from measurements
 - Fixed bandwidth, fixed antenna patterns, ...
- Model features
 - Path loss
 - Shadowing (dynamic/static, correlated)
 - Fast fading (distribution, multi-antenna properties)

Geometry-based stochastic models

- · Models a randomly generated propagation environment
- Bandwidth, antenna patterns can be adjusted
- Need proper calibration with measurements (which is quite difficult)
- Two representative models: COST2100, WINNER

