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Outline I

Last Time, Lecture 1
Communication networks - wireline and wireless
Cooperative systems
Basics of communication theory.

Today, Lecture 2
MIMO systems as foundation for cooperative communications [1]
Multipath propagation
Equivalent baseband representation
Large-scale and short-scale fading
Path loss
Characterization of small-scale fading
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Outline II

Lecture 2 cont.

Wide sense stationarity (WSS) and uncorrelated scattering (US)

SISO, SIMO, MISO, and MIMO signal model.

Double directional channel model

Classical iid channel model

Singular value decomposition and Frobenius norm

Spatial fading correlations
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Multiple-Input Multiple-Output (MIMO) Communications
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Advantages of Multiple Antennas
MIMO systems - multiple antennas are connected to a single device
Cooperative communication systems - each device may have a single
antenna only. Cooperation allows to achive (partial) MIMO gains.

Multiple antenna gains:
Energy efficiency (array gain): Signal to thermal noise ratio is
improved. Increased coverage.
Error rate reduction (diversity gain): Mitigates fading through
spatial diversity. Improved quality.
Spectral efficiency (multiplexing gain): Increased bits/channel
access (bpca) rate.
Interference reduction: Improve the reuse factor in multi-user
scenarios.

Diversity gain and spatial multiplexing may be mutually conflicting goals
both in MIMO and in cooperative communications systems.
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Obstacles to MIMO Implementations

Hardware costs: Multiple antennas mean multiple RF chains.
Battery: More involved signal processing requires more computing
power and energy.
Portable consumer devices are especially sensitive to cost arguments.

Are cooperative communcation systems the better solution? Maybe we
will know a partial answer at the end of the lecture.
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Multipath Propagation: SISO Case
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� path
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number of paths

φ� angle of arrival

fC carrier frequency

c0 speed of light

Time-variant channel impulse response

hp(t, τ) =
L�−1�

�=0

η�e
j2πf�tδ(τ − τ�) , f� =

v cosφ�fC
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Equivalent Baseband Description I
Transmitted signal

s(t) = Re[sb(t)ej2πfc t ] ,

with carrier frequency fc , baseband signal sb(t).
Received signal

x(t) = Re[

�L−1�

�=0

η�ej2πf�te−j2πfcτ�sb(t − τ�)

�

� �� �
rb(t)

ej2πfc t ]

rb(t) baseband received signal
Equivalent baseband physical channel description

hp(t, τ) =
L−1�

�=0

η�ej2πf�tδ(t − τ�)
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Large-scale and short-scale fading
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Path loss I

Free space propagation

Pr = Pt

�
λc

4πd

�2

GtGr , λc =
c0

fc

Pt ,Pr transmitted power, received power
Gt ,Gr antenna gains

λc wavelength
c0 speed of light
fc carrier frequency
d distance between receiver and transmitter
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Path loss II

d

h
t

h
r

Cellular environment with surface reflection

Pr = Pt
(hthr )2

d4
GtGr , d2 � hthr

ht , hr height of antennas

Path loss exponent varies from 2.5 to 6 depending on terrain and foliage.
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Large-Scale Fading

Long term signal power fluctuations due to
buildings,
terrain.

Characterized by a log-normal distribution with probability density
function (pdf)

f (x) = 1√
2πσ

e−
(x−µ)2

2σ2

x signal power level in dB
µ mean received signal power level
σ standard deviation (typical value 8 dB)
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Small-Scale Fading

Rapid fluctuations of the received signal in space, time and frequency.
Large number of independent scattered components
Central limit theorem
Rayleigh fading - channel h is complex Gaussian with zero mean,
envelope r = |h| is Rayleigh distributed

f (r) = 2r
Ω

e− r2

Ω u(r),

Ω average receive power

u(r) unit step function, u(r) =
�

1 , r ≥ 0, r ∈ R
0 , r < 0, r ∈ R

Ricean fading - additional (deterministic) line of sight (LOS)
component
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Characterization of Small-Scale Fading

Time selective fading: coherence time - time separation between
individual channel fades

Frequency selective fading: coherence bandwidth - frequency
separation between individual channel fades

Space selective fading: coherence distance - separation of antenna
elements for independent fading
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Time-Selective Fading - Doppler Spread

Doppler shift ν is caused by scatterer or user movement

ν =
v
λc

cos(θ) ,

where θ is the angle between velocity vector and the propagation
direction.
Superposition of many paths leads to Doppler spread.
For UMTS with carrier frequency 2GHz and users moving with
v = 100km/h, Doppler is ν = 185Hz.
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Doppler spectrum

f+fDmax-fDmax

S fp( )

Clarke (theoretical)

practical

Clarke’s model

Uniformly distributed scatterers around the mobile [2]

ΨD(ν) =






1

πνD

�
1 − (ν/νD)

2

for |ν| < νD ,

0 otherwise.

Coherence time TC ∝ 1/νD
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Power-Delay Profile

Exponentially decaying power delay profile η2(τ) with (root mean
square) delay spread TD.

η2(τ) =
1

TD

e−
τ

TD

Coherence bandwidth Bc ∝ 1/TD.
Typical values for urban environment 0.26µs≤ TD ≤ 1µs.
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Frequency Selective Fading - Delay Spread
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Impulse response magnitude |h(t)| (exponential PDP,
non-line-of-sight environment)
Delay spread leads to frequency-selective fading
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Space-Selective-Fading - Angle Spread

Rx

Tx

..
.

Angle spread due to
local scatterers near the mobile
local scatterers near the base station
remote scatterers

Range: 2 (flat rural) to 30 (hilly terain) degrees
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Angle spectrum

Root mean square (RMS) angle spread

θRMS =

����
� π
−π(θ − θ)2ΨA(θ)dθ� π

−π ΨA(θ)dθ
, θ =

� π
−π θΨA(θ)dθ� π
−π ΨA(θ)dθ

Coherence distance Dc ∝ 1/θRMS
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Macro-Cell Scatterer Model

BS

MS

Near

scatterer

Far

scatterer

vv

Scattering

Local to mobile station (MS) - angle spread, Doppler spread
Local to base station (BS) - angle spread
Far scatterer - delay spread, angle spread
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Time and Space-Variant Impulse Response

Impulse response hp(τ, t,d) at the receive antenna at location d for
an impulse launched at t − τ .
Assume zero-mean impulse response E{hp(τ, t,d)} = 0 (no line of
sight (LOS) component).
hp(τ, t,d) includes the antenna characteristics.
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Wide Sense Stationarity (WSS) and Uncorrelated
Scattering (US) I

Wide sense stationarity (WSS) (see [3])
Second order statistics of the channel are stationary

E{hp(τ, t)h∗
p(τ

�, t �)} = Rhh(τ, τ
�,∆t),

Correlation function Rhh(τ, τ �,∆t) depends only on the time-difference
∆t = t − t �.

WSS + Uncorrelated Scattering (US)
Attenuation and phase shift at delay τ is uncorrelated with delay τ �

E{hp(τ, t)h∗
p(τ

�, t �)} = Rhh(τ,∆t)δ(τ − τ �),
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Wide Sense Stationarity (WSS) and Uncorrelated
Scattering (US) II

Delay Doppler spreading function

Sh(ν, τ) =

� ∞

−∞
hp(τ, t)e−j2πνtdt

For WSSUS channels, paths with different delay or Doppler are
uncorrelated

E{Sh(ν, τ)S∗
h (ν

�, τ �)} = C(ν, τ)δ(ν − ν�)δ(τ − τ �)

Thomas Zemen, Nicolai Czink March 17, 2011 25 / 42



Homogeneous (HO) Channel

hp(τ, t,d) is WSS in space

E{hp(τ, t,d)h∗
p(τ, t,d + ∆d)} = Rd (τ, t,∆d),

where Rd (τ, t,∆d) is the lagged-space correlation function.

This assumption is usually not fulfilled in cooperative
communications!
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Scattering Function
One dimensional case: d lies on the x -axis. Channel description in
the delay(τ)-time(t)-angle(θ) domain is given by S(τ, t, θ) where

hp(τ, t, x) =
� π

−π
S(τ, t, θ)e−j2π sin(θ) x

λ dθ

Time invariant case: S(τi , θi) is the scattering amplitude of a
scatterer located at τi and θi .

Tx
Rx

x
0

!1

!2

S( , )" !2 2

S( , )" !1 1
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MIMO Channel and Signal Models
SISO channel

Time-variant impulse response: h(τ, t) = hp(τ, t) ∗ g(τ)
hp(τ, t) physical propagation channel
g(τ) combined effect of transmit pulse-shaping and receive
matched-filtering.

Received signal (without noise)

y(t) =
� τmax

0

h(τ, t)s(t − τ)dτ = h(τ, t) ∗ s(t)

For linear modulation, s(t) is a train of discrete amplitude pulses at
symbol spacing TS

s(t) =
∞�

m=−∞
(am + jbm)δ(tmTS)
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SIMO Channel

RxTx
s(t)

y (t)i

SIMO channel represented by MR × 1 vector h(τ, t)

h(τ, t) = [h1(τ, t), h2(τ, t), . . . , hMR (τ, t)]T

For input signal s(t), output at i-th antenna is given by

yi(t) = hi(τ, t) ∗ s(t) , i ∈ {1, 2, . . . ,MR}

In vector notation using y(t) = [y1(t), y2(t), . . . , yMR (t)]T

y(t) = h(τ, t) ∗ s(t)
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MISO Channel

RxTx

s (t)j

y(t)

MISO channel represented by 1 × MT vector h(τ, t)

h(τ, t) = [h1(τ, t), h2(τ, t), . . . , hMT (τ, t)]

For input signals sj(t), output is given by

y(t) =
MT�

j=1

hj(τ, t) ∗ sj(t)

In vector notation using s(t) = [s1(t), s2(t), . . . , sMT (t)]T

y(t) = h(τ, t) ∗ s(t)
Thomas Zemen, Nicolai Czink March 17, 2011 30 / 42

MIMO Channel

Tx

s (t)j

Rx

y (t)i

hi,j(τ, t) is impulse response between j-th (j = 1, 2, . . . ,MT )

transmit antenna and i-th (i = 1, 2, . . . ,MR) receive antenna.
MR × MT MIMO channel matrix H(τ, t)

H(τ, t) =





h1,1(τ, t) h1,2(τ, t) . . . h1,MT (τ, t)
h2,1(τ, t) h2,2(τ, t) . . . h2,MT (τ, t)

.

.

.

.

.

.

.
.
.

.

.

.

hMR ,1(τ, t) hMR ,2(τ, t) . . . hMR ,MT (τ, t)





In vector notation

y(t) = H(τ, t) ∗ s(t)
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Narrowband Array Assumption I

d

!

Tz

z(t)

y (t)1

y (t)2

Single Planar Wavefront
Wavefront z(t) = β(t)ej2πfc t arrives at an array having two antennas
with inter-element spacing d , at angle θ.
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Narrowband Array Assumption II

Wavefront z(t) has bandwidth B
Narrowband assumption: B � 1/Tz ⇒ β(t − Tz) ≈ β(t)

y1(t) = z(t) y2(t) = z(t)ej2π sin(θ) d
λ

Array response vector a(θ) = [1, ej2π sin(θ) d
λ ]T, equal to the array

manifold (for omnidirectional antennas).

Not fulfilled in cooperative communications!
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Double Directional Channel Model

Propagation Channel
Double-directional

D
O

D
s

MT

S( , )! "#$ MR

D
O

A
s

"Single-directional" Channel for DOAs

S( )$

TX-Site RX-Site

Radio Channel

scatterers

S( , )" $

S(θ, τ) =

� π

−π
S(φ, θ, τ)bT(ψ)dφ

b(φ) ∈ CMT array manifold of transmit array

H(τ) =

� π

−π

� τmax

0

a(θ)S(θ, τ �)g(τ − τ �)dτ �dθ

a(θ) ∈ CMR array manifold of receive array
Figure source: Steinbauer et.al [4]
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Classical IID channel model
For small delay spread TD � TS we can write

H(τ) =

�� π

−π
a(θ)S(θ, τ)dθ

�
g(τ) = Hg(τ)

If we assume rich scattering and sufficient antenna spacing:
Central limit theorem: Elements of H are zero-mean circularly
symmetric complex Gaussian random variables with unit variance:
H = Hw

Some properties of Hw

[Hw ]i,� ∼ CN (0, 1),

E{[Hw ]i,�} = 0

E{|[Hw ]i,�|2} = 1 ←not in coop. comm.!

E{[Hw ]i,�Hw ]∗i�,��} = 0 for i �= i � or � �= ��
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Frequency Selective Channels

MIMO channel in the frequency domain

H̃(f ) =
� ∞

−∞
H(τ)e−j2πf τdτ

More details later in the context of orthogonal frequency division
multiplexing (OFDM).
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Singular Value Decomposition of H

Any channel H can be decomposed as

H = UΣV
H

U
H
U = V

H
V = I r

Σ = diag{σi}r
i=1, σi > 0, r is the rank of the channel H

HH
H is Hermitian with eigendecomposition

HH
H = QΛQ

H

QQ
H = Q

H
Q = IMR

Λ = diag{λi}MR
i=1

λi = σ2

i is a random variable for random H
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Square Frobenius Norm of H

Square Frobenius Norm of H can be interpreted as the total power
gain of the MIMO channel

||H||2F = Tr(HH
H) =

MR�

i=1

MT�

j=1

|[H]i,j |2 =
MR�

i=1

λi

Power distribution:
||H||2F is a chi-square distributed random variable with 2MT MR
degrees of freedom,

f (x) = xMT MR−1

(MRMR − 1)!e
−x u(x)
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Spatial Fading Correlation I

Insufficient antenna spacing or lack of scattering causes individual
antennas to be correlated.

The channel may be modeled as

vec(H) = C
1/2vec(H)w

C is the MT MR × MT MR covariance matrix given by

C = E{vec(H)vec(H)H}

C is Hermitian positive semi-definite

C = QΛQ
H

C
1/2 = QΛ1/2

Q
H
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Spatial Fading Correlation II

Simpler more restrictive correlation model (Kronecker model)

H = R
1/2

r Hw R
1/2

t

R r is the MR × MR receive correlation matrix.

Rt is the MT × MT transmit correlation matrix.

C , R r and Rt are related through the Kronecker product (⊗)

C = R
T

t ⊗ R r
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Ricean Fading

Presence of line of sight (LOS) components

Channel is modeled as sum of LOS and scattered components

H =

�
K

1 + K H +

�
1

1 + K H̃

�
K

1+K H = E{H} is the LOS component and
�

1

1+K H̃ is the fading
component of the channel.
K ≥ 0 is the Ricean K-factor.
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