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Outline I

Today, Lecture 3 Part I
Wide sense stationarity (WSS) and uncorrelated scattering (US)
SISO, SIMO, MISO, and MIMO signal model.
Double directional channel model
Classical iid channel model

Today, Lecture 3 Part II
MIMO Channel Capacity
Channel unkown at transmitter
Channel known at transmitter
Diversity Multiplexing Tradeoff
Alamouti Scheme
OFDM
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Discrete-Time Transmission on Flat-Fading MIMO

Channels

For now, the channel gains are assumed constant:

yn = Hsn + nn

Properties of transmitted symbols:

E{sn} = 0,
Rss = E{sns

H

n },
tr{Rss} = Es : transmit energy

Important points:
All antennas transmit at the same time on the same resource
(frequency...).
Their signals interfere.
This is not a problem if we decode them jointly (the receive
antennas “cooperate”).
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Capacity of a Deterministic MIMO Channel

Method introduced by Telatar in 1995 ([1]):

Mutual information

I(s; y) = log
2
(det(IMR +

1
N0

HRssH
H)) bps/Hz

Channel capacity

C = max
tr(Rss )=Es

log
2
(det(IMR +

1
N0

HRssH
H)) bps/Hz.
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Channel Unknown at Transmitter I

If the channel is unknown at the transmitter it is reasonable to choose

Rss =
Es

MT
IMT

This choice maximizes the average mutual information over the class
of Gaussian i.i.d. channels H.

The mutual information achieved in this case is

I = log
2
(det(IMR +

ES
MT N0

HH
H))

.
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Channel Unknown at Transmitter II

The mutual information

I = log
2

�
det

�
IMR +

ES
MT N0

HH
H

��

can be written alternatively as

I = log
2

�
det

�
IMR +

ES
MT N0

UΛU
H

��

Using the identity det(Im + AB) = det(In + BA) for matrices A (m × n)
and B (n × m) we can write

I =
r�

i=1

log
2

�
1 +

ES
MT N0

λi

�

where r is the rank of the channel and λi are the positive eigenvalues of
HH

H.
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Channel Unknown at Transmitter III

Summary:

Multiple antennas effectively open r scalar data pipes (modes)
between transmitter and receiver.

Rss =
ES
MT

IMT results in equal energy allocation across the spatial
modes (with wastage if r < MT ).

In the absence of channel knowledge the individual channel modes
are not accessible.
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Channel Known at Transmitter I

V

s̃ s

H U
H

y

n

ỹ

Channel knowledge H obtained through feedback or reciprocity in
the case of time division duplexing (TDD)

Individual channel modes can be accessed by linear processing at the
receiver

Input vector s̃ ∈ C r with E{s̃ s̃
H} = MT
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Channel Known at Transmitter II

Signal model
y = Hs + n

Channel can be decomposed in H = UΣV
H

Precoding at transmitter: s = V s̃

At the receiver: ỹ = U
H

y

ỹ = U
H

HV s̃ + U
H

n

Inserting the singular value decomposition of H yields

ỹ = Σs̃ + ñ
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Channel Known at Transmitter III

The matrix channel H is decomposed into r parallel sub-channels

ỹi =
�

λi s̃i + ñi

for i ∈ {1, . . . , r}.
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Channel Known at Transmitter IV

Mutual Information is sum of individual SISO channels

I =
r�

i=1

log
2

�
1 +

γi
N0

λi

�

where
γi = E{|s̃i |2} is transmit energy in i-th sub channel and
�r

i=1
γi = Es .

Capacity achieved through optimal distribution of energy on the
individual sub-channels

C = max�r
i=1

γi=Es

r�

i=1

log
2

�
1 +

γi
N0

λi

�
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Optimal Energy Allocation

Maximization through Lagrangian multipliers

γopt
i =

�
µ− N0

λi

�+

, i = 1, . . . , r

r�

i=1

γopt
i = Es

where µ is a constant and (x)+ is defined as

(x)+ =

�
x if x ≥ 0
0 if x < 0

In order to ensure positive γi we apply the waterpouring algorithm to find
µ.
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Waterpouring Algorithm
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Optimal Transmit Covariance Matrix

Recall that
s = V s̃

Optimal transmit covariance matrix is given by

R
opt
ss = V R

opt
s̃s̃ V

H

where
R

opt
s̃s̃ = diag([γopt

1
, . . . , γopt

r ])
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Diversity-Multiplexing Tradeoff

r

d

0 1 2 min( , )M MR T

0

M MR T

(M )(MR T-1 -1)

(M )(MR T-2 -2)

Flexible tradeoff between diversity d and multiplexing gain r can be
achieved.
For the Hw (independent identical distributed) MIMO channel d(r)
is piecewise linear:

d(r) = (MR − r)(MT − r)
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Space-Time Coding - Alamouti-Scheme I

Rx

Tx

h
1

s
1

-s
2

s
2

s
1

h
2

*

*

Symbol period 1: y1 =
�

ES
2
(h1s1 + h2s2) + n1 ,

Symbol period 2: y2 =
�

ES
2
(−h1s∗

2
+ h2s∗

1
) + n2,

Decode by: ŝ1 = y1h∗
1
+y∗

2
h2

|h1|2+|h2|2 , ŝ2 = y1h∗
2
−y∗

2
h1

|h1|2+|h2|2

⇒ Do the maths!!
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Space-Time Coding - Alamouti-Scheme II

Alamouti scheme has diversity order 2MR .ALAMOUTI: SIMPLE TRANSMIT DIVERSITY TECHNIQUE FOR WIRELESS COMMUNICATIONS 1455

Fig. 4. The BER performance comparison of coherent BPSK with MRRC and two-branch transmit diversity in Rayleigh fading.

likelihood detector:

(15)

Substituting the appropriate equations we have

(16)

These combined signals are then sent to the maximum like-

lihood decoder which for signal uses the decision criteria

expressed in (17) or (18) for PSK signals.

Choose iff

(17)

Choose iff

(18)

Similarly, for using the decision rule is to choose signal

iff

(19)

or, for PSK signals,

choose iff

(20)

The combined signals in (16) are equivalent to that of four-

branch MRRC, not shown in the paper. Therefore, the resulting

diversity order from the new two-branch transmit diversity

scheme with two receivers is equal to that of the four-branch

MRRC scheme.

It is interesting to note that the combined signals from the

two receive antennas are the simple addition of the combined

signals from each receive antenna, i.e., the combining scheme

is identical to the case with a single receive antenna. We

may hence conclude that, using two transmit and receive

antennas, we can use the combiner for each receive antenna

and then simply add the combined signals from all the receive

antennas to obtain the same diversity order as -branch

MRRC. In other words, using two antennas at the transmitter,

the scheme doubles the diversity order of systems with one

transmit and multiple receive antennas.

An interesting configuration may be to employ two antennas

at each side of the link, with a transmitter and receiver chain

connected to each antenna to obtain a diversity order of four

at both sides of the link.

IV. ERROR PERFORMANCE SIMULATIONS

The diversity gain is a function of many parameters, includ-

ing the modulation scheme and FEC coding. Fig. 4 shows the

BER performance of uncoded coherent BPSK for MRRC and

the new transmit diversity scheme in Rayleigh fading.

It is assumed that the total transmit power from the two

antennas for the new scheme is the same as the transmit power

from the single transmit antenna for MRRC. It is also assumed

that the amplitudes of fading from each transmit antenna

to each receive antenna are mutually uncorrelated Rayleigh

distributed and that the average signal powers at each receive

antenna from each transmit antenna are the same. Further, we

assume that the receiver has perfect knowledge of the channel.

Although the assumptions in the simulations may seem

highly unrealistic, they provide reference performance curves

for comparison with known techniques. An important issue is

Figure source:[2, Fig. 4]
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OFDM Fundamentals I

Single carrier versus multi carrier

t

f

t

f

0 0 N

d
[0

]

d[0]

d[1]

d[2]

d[3]

d[4]

d[5]

d[6]
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d
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]

d
[2
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d
[3

]

d
[4

]

d
[5
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d
[6
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d
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single carrier multi carrier

T
C

T
C

1/TC Chip rate
N Number of subcarriers

d [0] . . . d [7] Data symbols
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OFDM Fundamentals II

Orthogonal subcarriers

f

f
q

f
q+1

0

!f

1

magnitude

. . . . . .

fq = q/(NTC)

q ∈ {0, . . . ,N − 1} Subcarrier index
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OFDM Fundamentals III

Processing steps

t t

t t t

t t

f

2*f

3*f

1

1

1

subcarriers modulated
subcarriers

symbols
(BPSK)

*(+1)

*(+1)

*(-1) +

Efficiently implementable by means of an inverse discrete Fourier
transform.
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OFDM Fundamentals IV

Cyclic prefix insertion

t

T
S

TS OFDM symbol duration.

A copy of the signal tail (length TG) is inserted at the beginning of
each OFDM symbol.
Absorbs multipath components, and turns a convolution into a cyclic
convolution.
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OFDM Fundamentals V

OFDM time frequency representation

…

Sub-carriersFFT

Time

Symbols

5 MHz Bandwidth

Guard Intervals

…

Frequency
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OFDM System Design

No inter-symbol interference: Guard interval larger than the delay
spread TD

TG > TD

Spectral efficiency: Symbol duration much larger than delay spread

TS � TD

Inter-carrier interference: Symbol rate much higher than Doppler
shift fD

1/TS � fD
[TS = (N + G)TC]

TG = GTC cyclic prefix length
G length of cyclic prefix in samples (chips)

TS = (N + G)TC OFDM symbol length
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Receiver Side Processing

Drop cyclic prefix and perform DFT
Channel partitioned in N parallel frequency flat channels
Simple equalization - complexity grows with N log(N)

d q[ ] y q[ ]

y[0]

y N[ -1]

g q[ ] n q[ ]

d[0]

d N[ -1]

..
.

..
.

..
.

..
.

... ...

g[0] n[0]

q subcarrier index

d data symbol

g subcarrier channel

coefficient

n additive noise

y received symbol
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Digital Video Broadcasting (DVB-T)

Single frequency broadcasting networks

All transmitters use the same frequency f1 = f2 = f3
Large distances d ≤ 75km between individual (high power)
transmitters cause long delay spreads TD ≤ 128µs

Transmitter 1

Transmitter 2

Transmitter 3

d<75km

f1

f2

f3

Receiver

B = 8 MHz bandwidth

N = 8192 subcarriers

G = 1024 cyclic prefix length

∆f = 988 Hz subcarrier bandwidth
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Wireless LAN (802.11a)

Indoor application

Multipath propagation, delay spread TD < 800 ns

B = 20 MHz bandwidth
N = 64 subcarriers
G = 15 cyclic prefix length

∆f = 312 kHz subcarrier bandwidth

Physical layer data rate 54 Mb/s
802.11n: Extensions to MIMO systems currently under development
[3]
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