Cooperative Communications

Lecture 3

Thomas Zemen, Nicolai Czink

March 24, 2011

Thomas Zemen, Nicolai Czink

Discrete-Time Transmission on Flat-Fading MIMO

Channels

For now, the channel gains are assumed constant:

 $\boldsymbol{y}_n = \boldsymbol{H}\boldsymbol{s}_n + \boldsymbol{n}_n$

Properties of transmitted symbols:

- $\mathsf{E}\{s_n\} = \mathbf{0}$,
- $\boldsymbol{R}_{ss} = \mathsf{E}\{\boldsymbol{s}_n \boldsymbol{s}_n^\mathsf{H}\},$
- tr{ \boldsymbol{R}_{ss} } = E_s : transmit energy

Important points:

- All antennas transmit at the same time on the same resource (frequency...).
- Their signals interfere.
- This is not a problem if we decode them jointly (the receive antennas "cooperate").

Outline I

Today, Lecture 3 Part I

- \bullet Wide sense stationarity (WSS) and uncorrelated scattering (US)
- SISO, SIMO, MISO, and MIMO signal model.
- Double directional channel model
- Classical iid channel model

Today, Lecture 3 Part II

- MIMO Channel Capacity
- Channel unkown at transmitter
- Channel known at transmitter
- Diversity Multiplexing Tradeoff
- Alamouti Scheme
- OFDM

March 24, 2011 2 / 27

Thomas Zemen, Nicolai Czink

March 24, 2011 1/27

March 24, 2011 3 / 27

Capacity of a Deterministic MIMO Channel

Method introduced by Telatar in 1995 ([1]):

• Mutual information

$$I(\mathbf{s}; \mathbf{y}) = \log_2(\det(\mathbf{I}_{M_R} + \frac{1}{N_0}\mathbf{H}\mathbf{R}_{ss}\mathbf{H}^{\mathsf{H}})) \text{ bps/Hz}$$

Channel capacity

$$C = \max_{\mathrm{tr}(\boldsymbol{R}_{\mathrm{ss}}) = \boldsymbol{E}_{\mathrm{s}}} \log_2(\mathrm{det}(\boldsymbol{I}_{M_{\mathcal{R}}} + \frac{1}{N_0}\boldsymbol{H}\boldsymbol{R}_{\mathrm{ss}}\boldsymbol{H}^{\mathrm{H}})) \quad \mathrm{bps}/\mathrm{Hz}.$$

Thomas Zemen, Nicolai Czink

Channel Unknown at Transmitter I

If the channel is unknown at the transmitter it is reasonable to choose

$$\boldsymbol{R_{ss}} = rac{E_s}{M_T} \boldsymbol{I}_{M_T}$$

- This choice maximizes the average mutual information over the class of Gaussian i.i.d. channels *H*.
- The mutual information achieved in this case is

$$I = \log_2(\det(\boldsymbol{I}_{M_R} + \frac{E_S}{M_T N_0} \boldsymbol{H} \boldsymbol{H}^{\mathsf{H}}))$$

-- FHVA Creating Communica

March 24, 2011 7 / 27

Thomas Zemen, Nicolai Czink

.

March 24, 2011 5 / 27

Channel Unknown at Transmitter III

Summary:

- Multiple antennas effectively open *r* scalar data pipes (modes) between transmitter and receiver.
- *R*_{ss} = E_s/M_T *I*_{M_T} results in equal energy allocation across the spatial modes (with wastage if r < M_T).
- In the absence of channel knowledge the individual channel modes are not accessible.

Channel Unknown at Transmitter II

The mutual information

$$I = \log_2 \left(\det \left(\boldsymbol{I}_{M_R} + \frac{E_S}{M_T N_0} \boldsymbol{H} \boldsymbol{H}^{\mathsf{H}} \right) \right)$$

can be written alternatively as

$$I = \log_2 \left(\det \left(\boldsymbol{I}_{M_R} + \frac{\boldsymbol{E}_S}{M_T N_0} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{H}} \right) \right)$$

Using the identity $det(I_m + AB) = det(I_n + BA)$ for matrices $A(m \times n)$ and $B(n \times m)$ we can write

$$I = \sum_{i=1}^{r} \log_2 \left(1 + \frac{E_S}{M_T N_0} \lambda_i \right)$$

where *r* is the rank of the channel and λ_i are the positive eigenvalues of HH^{H} .

Thomas Zemen, Nicolai Czink

March 24, 2011 6 / 27

Channel Known at Transmitter I

- Channel knowledge *H* obtained through feedback or reciprocity in the case of time division duplexing (TDD)
- Individual channel modes can be accessed by linear processing at the receiver
- Input vector $\tilde{\boldsymbol{s}} \in \mathbb{C}^r$ with $\mathsf{E}\{\tilde{\boldsymbol{s}}\tilde{\boldsymbol{s}}^{\mathsf{H}}\} = M_T$

March 24, 2011 8 / 27

Channel Known at Transmitter II

Signal model

 $\mathbf{v} = \mathbf{H}\mathbf{s} + \mathbf{n}$

- Channel can be decomposed in $\boldsymbol{H} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{H}}$
- Precoding at transmitter: $s = V\tilde{s}$
- At the receiver: $\tilde{y} = U^{H} y$

$$\tilde{y} = U^{H}HV\tilde{s} + U^{H}n$$

• Inserting the singular value decomposition of \boldsymbol{H} yields

$$\tilde{y} = \Sigma \tilde{s} + \tilde{n}$$

---ftw Creating Communication

Channel Known at Transmitter III

The matrix channel H is decomposed into r parallel sub-channels

 $\tilde{\mathbf{v}}_i = \sqrt{\lambda_i} \tilde{\mathbf{s}}_i + \tilde{n}_i$

 $\gamma_i^{opt} = \left(\mu - \frac{N_0}{\lambda_i}\right)^+, \quad i = 1, \dots, r$

 $\sum_{i}^{r} \gamma_{i}^{opt} = E_{s}$

 $(x)^{+} = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$

In order to ensure positive γ_i we apply the waterpouring algorithm to find

for $i \in \{1, ..., r\}$.

Optimal Energy Allocation

Maximization through Lagrangian multipliers

where μ is a constant and $(x)^+$ is defined as

Thomas Zemen, Nicolai Czink

March 24, 2011 10 / 27

Thomas Zemen, Nicolai Czink

March 24, 2011 9 / 27

Channel Known at Transmitter IV

Mutual Information is sum of individual SISO channels

$$I = \sum_{i=1}^{r} \log_2 \left(1 + \frac{\gamma_i}{N_0} \lambda_i \right)$$

where

• $\gamma_i = \mathsf{E}\{|\tilde{s}_i|^2\}$ is transmit energy in *i*-th sub channel and

•
$$\sum_{i=1}^r \gamma_i = E_s$$
.

Capacity achieved through optimal distribution of energy on the individual sub-channels

$$C = \max_{\sum_{i=1}^{r} \gamma_i = E_s} \sum_{i=1}^{r} \log_2 \left(1 + \frac{\gamma_i}{N_0} \lambda_i \right)$$

--ftw Creating Communication

March 24, 2011 11 / 27

Thomas Zemen, Nicolai Czink

 μ .

March 24, 2011 12 / 27

Waterpouring Algorithm

Recall that

 $s = V \tilde{s}$

Optimal transmit covariance matrix is given by

Optimal Transmit Covariance Matrix

$$m{R}_{ss}^{opt} = m{V}m{R}_{\widetilde{s}\widetilde{s}}^{opt}m{V}^{\mathsf{H}}$$

where

Thomas Zemen, Nicolai Czink

$$\boldsymbol{R}_{\tilde{s}\tilde{s}}^{opt} = \operatorname{diag}([\gamma_1^{opt}, \dots, \gamma_r^{opt}])$$

---ftw Creating Communication

March 24, 2011 16 / 27

Diversity-Multiplexing Tradeoff

- Flexible tradeoff between diversity *d* and multiplexing gain *r* can be achieved.
- For the *H_w* (independent identical distributed) MIMO channel *d*(*r*) is piecewise linear:

$$d(r) = (M_R - r)(M_T - r)$$

March 24, 2011 15 / 27

Space-Time Coding - Alamouti-Scheme I

- Symbol period 1: $y_1 = \sqrt{\frac{E_S}{2}}(h_1s_1 + h_2s_2) + n_1$,
- Symbol period 2: $y_2 = \sqrt{\frac{E_s}{2}} (-h_1 s_2^* + h_2 s_1^*) + n_2$,
- Decode by: $\hat{s}_1 = \frac{y_1h_1^* + y_2^*h_2}{|h_1|^2 + |h_2|^2}, \ \hat{s}_2 = \frac{y_1h_2^* y_2^*h_1}{|h_1|^2 + |h_2|^2}$

 \Rightarrow Do the maths!!

Space-Time Coding - Alamouti-Scheme II

Alamouti scheme has diversity order $2M_R$.

OFDM Fundamentals II

Orthogonal subcarriers

$f_q = q/(NT_{\rm C})$

 $q \in \{0, \ldots, N-1\}$ Subcarrier index

---ftw Creating Communication

March 24, 2011 19 / 27

OFDM Fundamentals I

Single carrier versus multi carrier

OFDM Fundamentals III

Processing steps

Efficiently implementable by means of an inverse discrete Fourier transform.

---ftw Creating Communication

OFDM Fundamentals IV

Cyclic prefix insertion

- $T_{\rm S}$ OFDM symbol duration.
- A copy of the signal tail (length T_G) is inserted at the beginning of each OFDM symbol.
- Absorbs multipath components, and turns a convolution into a cyclic convolution.

```
Thomas Zemen, Nicolai Czink
```

March 24, 2011 21 / 27

OFDM Fundamentals V

OFDM time frequency representation

OFDM System Design

• No inter-symbol interference: Guard interval larger than the delay spread $T_{\rm D}$

 $T_{\rm G} > T_{\rm D}$

• Spectral efficiency: Symbol duration much larger than delay spread

$$T_{\rm S} \gg T_{\rm D}$$

• Inter-carrier interference: Symbol rate much higher than Doppler shift $f_{\rm D}$

 $1/T_{\rm S} \gg f_{\rm D}$

 $[T_{\mathsf{S}} = (N+G)T_{\mathsf{C}}]$

Thomas Zemen, Nicolai Czink

 $T_{\rm G} = GT_{\rm C}$ cyclic prefix length

G length of cyclic prefix in samples (chips)

$$T_{\rm S} = (N + G)T_{\rm C}$$
 OFDM symbol length

March 24, 2011 23 / 27

-ftw Creating

Receiver Side Processing

- Drop cyclic prefix and perform DFT
- Channel partitioned in N parallel frequency flat channels
- Simple equalization complexity grows with $N \log(N)$

Digital Video Broadcasting (DVB-T)

Single frequency broadcasting networks

- All transmitters use the same frequency $f_1 = f_2 = f_3$
- Large distances $d \le$ 75km between individual (high power) transmitters cause long delay spreads $T_{\rm D} \le$ 128 μ s

References I

- I. Telatar, "Capacity of multi-antenna gaussian channels," AT&T Bell Labs, Tech. Rep., Jun. 1995.
- S. Alamouti, "A simple transmitter diversity sceme for wireless communications," *IEEE J. Sel. Areas Commun.*, vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
- S. Nanda, R. Walton, J. Ketchum, M. Wallace, and S. Howard, "A high-performance MIMO OFDM wireless LAN," *IEEE Commun. Mag.*, vol. 43, no. 2, pp. 101–109, Feb. 2005.

Wireless LAN (802.11a)

Indoor application

- $\,$ $\,$ Multipath propagation, delay spread $\,T_{\rm D}<800\,\text{ns}$
 - $B = 20 \,\mathrm{MHz}$ bandwidth
 - N = 64 subcarriers
 - G = 15 cyclic prefix length
 - $\Delta f = 312 \,\text{kHz}$ subcarrier bandwidth
- Physical layer data rate 54 Mb/s
- 802.11n: Extensions to MIMO systems currently under development
 [3]


```
Thomas Zemen, Nicolai Czink
```

March 24, 2011 26 / 27

