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Last Time, Lecture 3
o MIMO Channel Capacity

Cooperative Communications o Channel unkown at transmitter
Lecture 4 o Channel known at transmitter
o Diversity multiplexing tradeoff

Thomas Zemen, Nicolai Czink o Alamouti scheme

o OFDM
Today, Lecture 4
March 31, 2011
@ Vehicular channel properties
o Network models (wireline and wireless)

o Wireline cooperation methods

o Wireless cooperation methods M
Network Models Node Constraints
o Network represented by a graph @ Node 2 has limited processing power C,

o set of N nodes
o set of £ edges, that are pairs of nodes

directed edge (u, v) goes from node u to node v

Edge (u, v) has capacity Cuy

Node 2

Edge variables have alphabet of size 2w

o Half duplex constraint - a port can either transmit or receive

X12 X23
S—=F=F S nEx uE s
1 2 — U,

=
Node 1 Node 2 Node 3 0 ifXy#0.

Node 1 Node 2 Node 3

The symbol 0 might represent a “silence” symbol.

N =1{1,2,3}, £ ={(1,2),(2,3)}

Figure source: [1, Fig. 3.2 and Fig. 3.3]

Figure source: [1, Fig. 3.1] w w
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Wireless Relay Channel Fast and Slow Fading

Node 2 o Marginal distributions:

) o Assume the Hy,;, i =1,2,...,n, have the same marginal
Vs X, Y, X, distribution H,, during a communication session (stationarity)
o No fading: H,, is a known constant
X, Y, ' T o Rayleigh fading (see Lecture 2 and 3): Hu, ~ CA{0,1} is complex

E Gaussian, with zero mean and unit variance.
=\ (= .
Node 1 Node 3 o Temporal correlation

I

o Fast fading: hyy,; are independent realizations of H,,

o h.. are fading eains o Slow fading: H,,,; = H.y, hence H,, is drawn once for all
v, — h12X—|—Z w €8 i=1,2,...,n.
2= de/? ! 2 o d,, are distances Ie ; ; ' i
> o Correlated fading e.g. according to Clarke's model will be treated
h h o « is the attenuation later.
Y3 = 7:/32 X1+ 75?2 Xo+ 23
di3 b3 exponent o A channel is fast fading if each packet encounters many channel

] ] realizations. A channel is slow fading if a packet encounters one
Figure source: [1, Fig. 3.5] w o w
. channel realizations. .
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Wireless Device Models Discrete Memoryless Network Models |

@ Power and energy constraints:
o Block constraint: 37| [Xi[?/n < P or Y0 E{|Xi*} /n < P o Node u has one input variable X, and one output variable Y.
. i=1 ! — i=1 ! —
o Symbol-wise constraints: |Xi|* < P or E{|Xi[’} < P for all i o Network clock: node u transmits X, ; between clock tick i — 1 and

o Half-duplex constraint tick i, and receives Y, ; at tick i. The clock ticks n times.

, o Causality: X, ; function of its own messages and its past channel
12 H — .
v, — Xt X =0 outputs Yi~1 = Y, 1, Yua, ..., Yui 1.

0 if X2 #0 @ M sources, source m puts out message W,,, with By, bits and rate

o Limited channel knowledge Rm = B/ n.

o A sink accepts an estimate W,,(u) at node u.
o (no) channel state information at the transmitter (CSIT) and (no) P m(v)

channel state information at the receiver (CSIR)

e, e
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Discrete Memoryless Network Models ||

o Capacity region: closure of the set of rate tuples (Ry, Rz, . ..

for which

Pr LA_/,J U {VAV,,,(U);&W,,,}

m=1ueD,,

7RM)

can be made close to zero, where D,, is the set of nodes that
decode W,,.

o The capacity region is not known for any memoryless network except

for the discrete memoryless channel (DMC) and the multiple access

channel (MAC).

Thomas Zemen

Cooperative Networks
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Network

Device
Nodes

Channel :
Edges | Sources | Sinks

Relay
Channel (RC)

MAC with
Generalized
Feedback
(MAC-GF)

Three—way
Channel 3WC)

Figure source: [1, Fig. 3.8]
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Basic Networks

Thomas Zemen

Network gzéi;e Cé1:;|:sel Sources | Sinks Graph
Point—to—Point
Channel (DMC & 2 1 1 1 W oo - o~V
AWGN Channel)
Two-way Wi Wa
Chamet@wey | 2 | 4 | 2|2 | ;
Wg Wl
. M 3 Wi
Multiaccess 3 2 3 3 W VVO
Channel (MAC) .
Wg WZ
2 Wi
Broadcast Wi VV)(Z)
Channel (BC) 3 2 3 4 Wy N
W2 VYO(S)
3 WQ

Figure source: [1, Fig. 3.7]

Networks with Four Device Nodes

Thomas Zemen
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Network Ef,f,‘;: Cé’;;:: ! Sources | sinks Graph
MAC with a Wi 4 Wi
Dedicated Relay 4 6 3 3 W Wo
(MAC-DR) W, W,
BC witha
Dedicated Relay 4 6 3 4
(BC-DR)
3 .
Interference Wi Wi
Channel (IC) 4 4 2 2 N
Ws Wy
4
3 .
Cognitive Radio Wi Wy
Channel 4 6 2 2 N
W Wy
4

Figure source: [1, Fig. 3.9]
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AWGN MAC

1

W1 3 Wl
W W
W, W,

2
yo o s - Xoil?Y /n< Py, u=1,2
=Xt X+ Z, Y E{[Xul} /n< Py u=1,

dl d2 i=1
Rate region defined by

1

R < 5 log,(1 4+ 71)
1

Ry < 5 log,(1 + 72)
1

Ri+R < 5 logo(1 + 71 + 72)

P o2 v,

where v, = (%
N
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Routing |

Routing assigns flows to every path so that no coding , i.e. combining of

bits symbols or packets is done.

Wy
Figure source: [1, Fig. 4.1]

o Directed network: From node 1 to node 6 exists exactly one path

(1,3,4,6) exists.
o Routing achieves the rate pair (R, R) = (1 —3,8) for 0 < 5 < lw
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Capacity Region

R, TDM/FDM
— N
%log(l +72) R = 2(1+72) log(1+m +72)
Ry = gty log(1 471+ 72)
Llog (M)
Ry

Slog (£22)  Llog(1+ 1)

Frequency division mutliplex (FDM):
o Node 1 and 2 use the fraction o and 1 — « of the bandwidth.
o Noise power reduces to aN and (1 — a)N
o Ry =a/2logy(1 +71/a), Ry = (1 - a)/2log, (1 +72/(1 - )

few.
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Figure source: [1, Fig. 3.10]
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Routing Il
Undirected network
o
Wy Wa
‘ 2
3
4
. 6
W, ] Wy

Figure source: [1, Fig. 4.2]
Each edge is modeled as two-way-channel (2WC) defined by

(XUV7 Zvu) if Xuv 7é 07 Xvu = 07
(YUV7 YVU) = (Zuv’ Xvu) If Xuv - Oa XVU 75 07

(ZUV7 Zvu) if Xuv = 07 Xvu =0. m
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Routing Il Network Coding

Optimal routing for undirected butterfly network

@ Routing: Smaller rate region for
directed than for undirected

networks

o Network coding: allow combination

of packets.
W,

o Node 3 combines packets by
XORing them bitwise, X1 @ Xa.
o Called linear network coding if

Figure source: [1, Fig. 4.3]

° We assume C,y =1 for all edges (u, v). combining operation if done over

o Four paths from node 1 to node 6 exist: (1,3,4,6), (1,3,2,6), 3 finite field.
(1, 5,4, 6), (1, 5,4,3,2, 6) Figure source: [1, Fig. 4.4]
o Rate pair (R1, R2) = (1,1) can be achieved. M Network coding achieves (Ry, Ry) = (1,1) for a directed network. w
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Wireless Strategies Basic Model |
Cooperative coding combines symbols atht the physical (and higher)
layer to produce new symbols. Riay
dy T g
Cooperative coding types:
A T
. @ - -0
o amplify-and-forward (AF) Source dis Destination Source Relay Destination
o classic multi-hop (a) (b)

o compress-and-forward (CF)

o decode-and-forward (DF) Figure source: [1. Fig. 4.8]

(a) Nodes u and v at distance d,,

o multipath decode-and-forward(MDF) (b) Linear geometry
@ .. @ source and destination at distance di3 = 1.
First we will use idealized wirless models o Relay at distance di» = |d| to the source and db3 = |1 — d| to the
o full duplex radio destination
o CSIR, no CSIT w o Long-range attenuation is included in power constraints w
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Basic Model Il

Signal model:

Hio

Yo=—5X1+ Z
2 FIRE 1+ 42
Has
Ys = HXi+ ———F=Xo + Z
3 13 1+|1—d|0‘/2 2+ 43

with Z; ~ CN(0, N).
We will consider three kinds of fading:
@ no fading - H,, is constant
Q fast uniform phase fading - H,, are independet and uniform over
{2 ¢ e0,2m)}.
© fast Rayleigh fading - H,, are indendent and Gaussian with zero
mean and unit variance
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Amplify-and-Forward Il
Without fading (2) is an AWGN channel with unit memory intersymbol
interference — waterfilling optimization of the spectrum of X{" [2, Sec.
VII.BJ, [3, Sec. 5.3.2].

_ -7 AF

- Telyolf TR o Pi/N=P/N
g 7 o Hy,=1
[24

2k 1 o a=2

p for DF

few.

=10

o relay off for d < 0.5

. . . I .
-1 =075  -05 025 0 0.25

Figure source: [1, Fig. 4.9]
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Amplify-and-Forward |

The relay amplifies the received signal

Hip i
Xoi=aYoi_1=a ( |;|2(’1/21 Xi,i—1+ Z2,i71)

where a is chosen to satify the relay's power constraint.

Destination output

Has i
Y3, = Hh3,iX1,i + A= djor2 _zjia/zxz”' + 23, (1)
N Hi2,i—1Hba3 i Hos i
= Hi3,i X1, + amxl,i—l + amzz,i—l + 23

()

To fulfil the power constraint

o < i
N+ Py E[|H12[?] /|d|*

Classic Multi-Hop

Source transmitts message W to the relay in one-time slot

Relay fowards W to the destination in second-time slot

Time fraction 7 assigned to first hop and 7 = 1 — 7 to second hop

For constant His and Ho3

. Py |H*\ P> | Has?
R = | 1+ ——— | 1+ ——
min |:T og2< + T|d|0‘N , T log, +?|1—d|°‘N

Classic Multi-Hop performs worse than using no relay for any d.

Multi-hop works well for half-duplex relays if o > 2.
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