Cooperative Communications

Lecture 6

Paolo Castiglione Thomas Zemen

April 14, 2011

Paolo Castiglione and Thomas Zemen

April 14, 2011 1/47

tt w

• Introduction for the block fading case and links to decode-and-forward

Outline

Last Time, Lecture 5

- Towards practical implementations
 - Gaussian (half-duplex) relay channel
 - Degraded relay channel
 - Decode-and-forward (DF)
 - Low density parity check (LDPC) codes

Today, Lecture 6

- Coded Cooperation
 - Introduction for the block fading case and links to decode-and-forward
 - Rate-compatible puncture convolutional (RCPC) codes
 - Cooperation scheme
 - Time-variant fading channel
 - Union bound and pairwise error probability (PEP)
 - Spatial diversity vs. temporal diversity
 - Results and *cooperative regions*

Paolo Castiglione and Thomas Zemen

ftw.

April 14, 2011 2/47

Relay Channel Model Reprise I

Time-division hald-duplex communication takes place over two time slots of normalized duration t and t' = (1 - t).

- First slot
 - $\, \bullet \,$ S transmits information that is received by both R and D
 - Broadcast (BC) mode
- Second slot
 - $\bullet~$ Both S and R transmit to D
 - Multiple-access (MAC) mode

Paolo Castiglione and Thomas Zemer

Relay Channel Model Reprise II

Gaussian relay channel model (cf. Lecture 7):

$$V_1 = h_{SR} X_1 + N_{R_1}, \quad Y_1 = h_{SD} X_1 + N_{D_1}$$

$$Y_2 = h_{SD}X_2 + h_{RD}W_2 + N_{D_2}$$

Variable naming convention:

- X . . . signal transmitted by the source
- $\bullet \ V \dots \text{ signal received by the relay}$
- $W \dots$ signal transmitte by the relay
- $Y \dots$ signal received by the destination
- $\bullet \ \text{subscript} \cdot_1 \ldots \text{BC} \ \text{mode}$
- $\bullet \ \text{subscipt} \ \cdot_2 \ \dots \ \text{MAC} \ \text{mode}$
- SR channel ... source-relay channel

ftw.

April 14, 2011 5/47

Paolo Castiglione and Thomas Zemen

Coded Cooperation I

New situation

- Two (not too distant) users want to communicate to the same base station
- No dedicated relay is present
- Can this two users help each other to obtain better diversity?

ftw.

Decode-and-Forward (DF) Relay Coding

Basic idea

- The source transmission is first decoded by the relay.
- The relay helps then the destination by transmitting additional information about the codeword.
- Different code families can be utilized for relaying
 - convolutional codes [1][3](and other non-iterative linear codes)
 - turbo codes
 - low density parity check (LDPC) codes [2]
- Coded cooperation, a variant of DF, achieves spatial diversity at no bandwidth/power/rate costs: no repetition! More efficient than basic Decode-&-Forward

Paolo Castiglione and Thomas Zemen

April 14, 2011 6 / 47

Coded Cooperation II

Basic idea

- Assume a baseline wireless system using a rate-R channel code
- Coded cooperation uses the same overall rate by just re-arranging the coded symbols of the two users
- K information bits per block and N coded bits per block, R = K/N
- Divide each codeword into two segments of length N_1 and N_2 , $N_1 + N_2 = N$.

User 1: User 1 bits User 2 bits	<u>.</u>	Rx User 2	Inactive	User 1 bits	User 2 bits
User 2: Rx User 1 Inactive	[User 2 bits	User 1 bits	 Rx User 1	Inactive
U ₁ Slot	-	← U ₂	Slot►	- U1	Slot

Figure source: [2, Fig. 1]

Coded Cooperation III

- First segment:
 - sub-codeword of rate $R_1 = K/N_1$ is broadcasted by the user and received to varying degree by base station and partner.
 - Each user will receive a noisy version of the coded message from its partner
- Second segment:
 - Correct decoding can be checked by cyclic redundancy check (CRC)
 - In case of correct decoding the N_2 additional parity bits for the partner are computed and transmitted
 - otherwise N_2 additional participation bits for users own data are transmitted

Coded Cooperation V

Coded Cooperation IV

• 4 configurations of the punctured bits transmission in the II frame (depending on the success of the inter-user detection)

Coded Cooperation VI

Performance for block fading channels (slow fading)

Figure source: [2, Fig. 3]

RCPC codes

$$\mathbf{x}=\mathcal{C}\left(\mathbf{u}
ight)=\left[egin{array}{c} \mathbf{x}_{\mathrm{c}}\ \mathbf{x}_{\mathrm{p}}\end{array}
ight]$$

The rate-compatibility restriction on the puncturing tables ensures that all code bits of the higher rate $R_1 = \frac{K}{N_1}$ code are used by the lower rate $R = \frac{K}{N}$ code. ¹

¹A RCPC code is almost as good as the best known general convolutional code of the respective rate. Source bits: $\mathbf{u} = [u_0, ..., u_K]^T \in \{\pm 1\};$ coded bits: $\mathbf{x} = [x_0, \dots, x_{N-1}]^{\mathrm{T}} \in \{\pm 1\};$ rate- R_1 code: $\mathbf{x}_c = [x_{c;0}, \dots, x_{c;N_1-1}]^T$; punctured bits: $\mathbf{x}_p = [x_{p;0}, \dots, x_{p;N_2-1}]^T$

Paolo Castiglione and Thomas Zemen

Receiver side

• Received signal at the BS from MS-*i*: $y_i[m]^3$

 $v_i[m] = h_i[m]s_i[m] + z_i[m]$

• Matched filter and zero-forcing (channel known at the receiver)

$$\tilde{y}_{i}[m] = \frac{h_{i}^{*}[m] y_{i}[m]}{\left|h_{i}[m]\right|^{2}} \sim \mathcal{CN}\left(s_{i}[m], \frac{\sigma_{z}^{2}}{\left|h_{i}[m]\right|^{2}}\right)$$

 ${}^{3}m \in \{0, \ldots, M-1\};$ Rayleigh fading impulse response $h_i[m] \sim C\mathcal{N}(0, \Omega)$; AWGN $z_i[m] \sim C\mathcal{N}(0, \sigma_z^2)$.

Transmitter side

Paolo Castiglione and Thomas Zemen

 $\bullet~\mbox{MS-}{\it i}$ interleaves its codeword $x \to x_I.$ The interleaved coded bits $\mathbf{x}_{\mathrm{I}} = \begin{bmatrix} x_{\mathrm{I};0}, & \dots, & x_{\mathrm{I};N-1} \end{bmatrix}^{\mathrm{T}}$ are mapped onto M - J QPSK symbols²

• Rate-compatible puncture convolutional (RCPC) codes

$$s_i[k] = \sqrt{\frac{E_{\rm S}}{2}}(x_{{\rm I};2k} + jx_{{\rm I};2k+1})$$

• J QPSK random pilot symbols are placed uniformly along the frame

 $k \in \{0, \ldots, M - J - 1\}.$

April 14, 2011 15 / 47

April 14, 2011 14 / 47

ftw.

 $^{^{2}}E_{\rm S}$: transmitted energy per QPSK symbol;

Soft Input Viterbi decoder I

At the input of the Viterbi decoder, the single de-interleaved code bit $\tilde{\gamma}_n$ $(de-mapped from s_i[m])^4$

 $\tilde{y}_n = x_n + \tilde{z}_n$

Soft Input Viterbi decoder II

The soft inputs for the Viterbi decoder, given the equalized bits $\tilde{\mathbf{y}}_n = \begin{bmatrix} \tilde{y}_0, \dots, \tilde{y}_{N-1} \end{bmatrix}^T$, are the Log-Likelihood ratios (LLR) $\mathbf{w} = \begin{bmatrix} w_0, & \dots, & w_{N-1} \end{bmatrix}^{\mathrm{T}_5}$

$$w_n = \log \frac{P(\tilde{y}_n \mid x_n = +1)}{P(\tilde{y}_n \mid x_n = -1)} = \log \left[\frac{\exp\left(-\frac{(\tilde{y}_n - 1)^2}{2\tilde{\sigma}_z^2}\right)}{\exp\left(-\frac{(\tilde{y}_n + 1)^2}{2\tilde{\sigma}_z^2}\right)} \right] = \frac{2\tilde{y}_n}{\tilde{\sigma}_z^2}$$

Soft Input Viterbi decoder III

The output of the Viterbi decoder is the maximum likelihood estimate $\tilde{\mathbf{u}} = \left[\begin{array}{ccc} ilde{u}_0, & \ldots, & ilde{u}_K \end{array} \right]^{\mathrm{T}}$ of the encoded bits⁶ $\tilde{\mathbf{u}} = \arg \max_{\widehat{\mathbf{u}} = \mathcal{C}^{-1}(\widehat{\mathbf{x}})} P(\widetilde{\mathbf{y}}_n \mid \widehat{\mathbf{x}}) = \arg \max_{\widehat{\mathbf{u}} = \mathcal{C}^{-1}(\widehat{\mathbf{x}})} \mathbf{w}^{\mathrm{T}} \ \widehat{\mathbf{x}}$

• Cooperation scheme

 ${}^{6}\hat{\mathbf{x}} = \left[\begin{array}{cc} \hat{x}_{0}, & \ldots, & \hat{x}_{N-1} \end{array} \right]^{\mathrm{T}} \in \{\pm 1\}$ is a valid RCPC codeword generated from a possible source block $\hat{\mathbf{u}}$

ftw.

April 14, 2011 19 / 47

ftw.

Coded Cooperation: Encoding

- The RCPC code is punctured
- An error detection code (e.g. CRC) avoids error propagation: the partner's punctured bits are transmitted only if the detection is successful

ftw.

April 14, 2011 23 / 47

April 14, 2011 21/47

Paolo Castiglione and Thomas Zemen

• Time-variant fading channel

Paolo Castiglione and Thomas Zemen

Multipath Propagation

Time-variant channel impulse response

$$h(t,\tau) = \sum_{\rho=0}^{P-1} \eta_{\rho} \mathsf{e}^{\mathsf{j} 2\pi f_{\rho} t} \delta(\tau - \tau_{\rho}), \qquad f_{\rho} = \frac{v \cos \phi_{\rho} f_{c}}{c_{0}}$$

ftw.

April 14, 2011 22 / 47

- p path
- η_p attenuation
- τ_p time delay
- f_p Doppler shift
- *P* number of paths (scatterers)
- ϕ_p angle of departure
- $f_{\rm c}$ carrier frequency
- c₀ speed of light

Paolo Castiglione and Thomas Zemen

ftw.

Channel Model: Uplink

The **time-bandwidth product** [max Doppler shift x codeword duration] measures the temporal variability

$$\mathrm{TBP}_{i} = \frac{f_{\mathrm{c}} v_{i}}{c_{0}} \cdot 2M \cdot T_{\mathrm{s}}$$

• Frequency-flat Rayleigh fading uplink channels $h_i[m]$

• Clarke's autocorrelation function ($\uparrow TBP \Leftrightarrow \uparrow decorrelation$)

$${\mathcal R}_i\left[k
ight] = \mathbb{E}\left\{h_i\left[m
ight]h_i^*\left[m+k
ight]
ight\} = ar{\gamma}_i J_0\left(\pi k\cdot {
m TBP}_i/M
ight),$$

where $\bar{\gamma}_i$ is the **average SNR**

Paolo Castiglione and Thomas Zemen

April 14, 2011 25 / 47

ftw

• Union bound and pairwise error probability (PEP)

Channel Model: Inter-MS link

- Independent inter-MS channels
- Inter-MS block error rate p^7

⁷ The probability of successful coded cooperation is $(1 - p)^2$...

ftw.

Paolo Castiglione and Thomas Zemen

April 14, 2011 26 / 47

Union bound

The average BER at the output of the Viterbi decoder at the receiver-side is upperbounded

$$P_{ ext{b}} \leq \sum_{\Theta=1}^{4} \mathsf{Pr}(\Theta) \left[rac{1}{k} \sum_{d \geqq d_{ ext{free}}} \sum_{\mathbf{c} \in \mathcal{E}(d)} w(\mathbf{c}) P\left(\mathbf{c} \mid \Theta
ight)
ight]$$

The average PEP $P(\mathbf{c})$ depends on the fading statistics, while the values of the other parameters are fixed by the code.⁸

⁸Pr(Θ): probability of case Θ ; k: number of input bits for each branch of the convolutional code trellis; d_{free} : minimum Hamming distance between the codewords; $\mathcal{E}(d)$: set of error events **c** at a certain Hamming distance d from the all-zero codeword; $w(\mathbf{c})$: Hamming weight of the input sequence corresponding to **c**; $P(\mathbf{c})$: five. average pairwise error probability (PEP).

ftw. April 14, 2011 27 / 47

Pairwise Error Probability I

The *average* PEP is the probability of receiving the codeword $\mathbf{y} = \mathbf{x} + \mathbf{c}$ instead of the transmitted \mathbf{x} . Also defined, due to the linearity of the convolutional codes, as the probability of receiving \mathbf{c} (*error event*) instead of the all-zero codeword.

The PEP is averaged with respect to the probability density function of the effective SNR $\gamma_{\rm eff}{}^9$

$$P\left(\mathbf{c}
ight) = \int\limits_{0}^{\infty} Q\left(\sqrt{2\gamma_{\mathrm{eff}}}
ight) P\left(\gamma_{\mathrm{eff}}
ight) d\gamma_{\mathrm{eff}}$$

 $\overline{ \left[\begin{array}{c} {}^{9}\gamma_{\mathrm{eff}} = \sum_{k \in \mathcal{T}_{\mathbf{c}}} \gamma(k) = \sum_{k \in \mathcal{T}_{\mathbf{c}}} \frac{\mathrm{E}_{\mathrm{s}} |h_{i}(k)|^{2}}{\sigma_{z}^{2}} = \left\| \widetilde{\mathbf{h}} \right\|^{2}; \\ \mathcal{T}_{\mathbf{c}} = \left\{ \tau_{\mathbf{c},1}, \ldots, \tau_{\mathbf{c},d} \right\}: \text{ set of time instants associated with } \mathbf{c}; \\ \gamma_{\mathbf{c}} = \left[\begin{array}{c} \gamma(\tau_{\mathbf{c},1}), & \ldots, & \gamma(\tau_{\mathbf{c},d}) \end{array} \right]^{\mathrm{T}}: \text{ the corresponding instantaneous SNR;} \\ \widetilde{\mathbf{h}} = \frac{\sqrt{E_{\mathrm{s}}}}{\sigma_{z}} \left[\begin{array}{c} h(\tau_{\mathbf{c},1}), & \ldots, & h(\tau_{\mathbf{c},d}) \end{array} \right]^{\mathrm{T}}. \end{array}$

Pairwise Error Probability III

Paolo Castiglione and Thomas Zemen

The *d* error bits are split into two groups, d_1 and d_2 , coming from the MS's and the partner's independent uplink channels $i \in \{1, 2\}$, respectively at time instants $\mathcal{T}_{c;i} = \{\tau_{c,1;i}, \ldots, \tau_{c,d_i;i}\}$. The autocorrelation of $\widetilde{\mathbf{h}} = \frac{\sqrt{E_s}}{\sigma_z} \left[h_1(\tau_{c,1;1}), \ldots, h_1(\tau_{c,d_1;1}), h_2(\tau_{c,1;2}), \ldots, h_2(\tau_{c,d_2;2})\right]^{\mathrm{T}}$ becomes¹² $\mathbf{R}_{c} = \begin{bmatrix} [\mathbf{R}_{c,1}]_{d_1 \times d_1} & \mathbf{0} \\ \mathbf{R}_{c} = \begin{bmatrix} [\mathbf{R}_{c,1}]_{d_1 \times d_1} & \mathbf{0} \end{bmatrix} =$

$$= \begin{bmatrix} \mathbf{U}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{\Lambda}_2 \end{bmatrix} \begin{bmatrix} \mathbf{U}_{1}^{\mathrm{H}} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}$$

¹²Thereby, the eigenvalues of $\mathbf{R}_{\mathbf{c}}$ are $\lambda = [\lambda_1^{\mathrm{T}}, \lambda_2^{\mathrm{T}}]^{\mathrm{T}}$, where $\lambda_i = [\lambda_{1,1}, \dots, \lambda_{1,r_i}]^{\mathrm{T}}$ are the eigenvalues of the respective submatrices $\mathbf{R}_{\mathbf{c},i}$ with rank r_i .

April 14, 2011 29 / 47

Pairwise Error Probability II

 γ_{eff} is the sum of *d* correlated exponential random variables, whose autocorrelation is $\mathbf{R}_{c} = \mathbb{E}\left[\widetilde{\mathbf{h}}\widetilde{\mathbf{h}}^{\text{H}}\right]$. ¹⁰ Through an *eigenvalue* decomposition (EVD), the effective SNR becomes the sum of *r* uncorrelated exponential random variables $\left\{b_{k}^{2}\right\}_{k=1}^{r}$. ¹¹

$$\gamma_{\mathrm{eff}} = \left\| \widetilde{\mathbf{h}} \right\|^2 = \sum_{k=1}^r b_k^2 = \left\| \mathbf{b} \right\|^2$$

where $\mathbf{b} = \mathbf{U}^{\mathrm{H}} \widetilde{\mathbf{h}} = [b_1 \dots b_r]^{\mathrm{T}}$ is the linear projection of the channel onto the *r*-dimensional column-space of $\mathbf{R}_{\mathbf{c}}$.

¹⁰For its definition and for the stationarity of \mathbf{R}_{c} the fading process, the elements on the diagonal of \mathbf{R}_{c} are equal to the average SNR $\bar{\gamma} = \Omega \frac{E_{s}}{\sigma_{z}^{2}}$, where $\Omega = \mathbb{E} \left\{ |h[m]|^{2} \right\}$ ¹¹ $r = rank \{\mathbf{R}_{c}\}$; U: $d \times r$ matrix containing the eigenvectors of \mathbf{R}_{c} . Paolo Castiglione and Thomas Zemen April 14, 2011 30/47

Pairwise Error Probability IV

Pairwise Error Probability V

Moment Generating Function (MGF) method

The pdf of the effective SNR exhibits the MGF

$$\mathsf{M}_{\gamma_{\mathrm{eff}}}(s) = \int\limits_{0}^{\infty} e^{s\gamma_{\mathrm{eff}}} P\left(\gamma_{\mathrm{eff}}
ight) d\gamma_{\mathrm{eff}} = \prod_{i=1}^{r_1} rac{1}{1-\lambda_{1,i}s} \prod_{j=1}^{r_2} rac{1}{1-\lambda_{2,j}s}$$

Since $Q(x) = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\frac{x^2}{2\sin^2 \vartheta}} d\vartheta$, the PEP becomes

$$P(\mathbf{c}) = \int_{0}^{\infty} Q\left(\sqrt{2\gamma_{\text{eff}}}\right) P\left(\gamma_{\text{eff}}\right) d\gamma_{\text{eff}} = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{\infty} e^{-\frac{\gamma_{\text{eff}}}{\sin^{2}\vartheta}} P\left(\gamma_{\text{eff}}\right) d\gamma_{\text{eff}}\right] d\vartheta$$
$$= \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \mathbf{M}_{\gamma_{\text{eff}}} \left(-\frac{1}{\sin^{2}\vartheta}\right) d\vartheta = \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{r_{1}} \left(1 + \frac{\lambda_{1,i}}{\sin^{2}\vartheta}\right)^{-1} \prod_{j=1}^{r_{2}} \left(1 + \frac{\lambda_{2,j}}{\sin^{2}\vartheta}\right)^{-1} \prod_{j=1}^{r$$

Paolo Castiglione and Thomas Zemen

Pairwise Error Probability VII

Interleaver

The $d = d_1 + d_2$ non-zero bits of the error event **c** can appear within the two time frames in several possible configurations, each corresponding to a different, but equivalent, shift of **c** at theinput of the Viterbi decoder. Thus, $P(\mathbf{c}) \leq P(\mathbf{c_p})$, where $\mathbf{c_p}$ is the most probable among the equivalent translations of **c**.

Pairwise Error Probability VI

Upperbound on the PEP [3, (12)-(13)]

$$\begin{split} P(\mathbf{c}) &= \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{r_1} \left(1 + \frac{\lambda_{1,i}}{\sin^2 \vartheta} \right)^{-1} \prod_{j=1}^{r_2} \left(1 + \frac{\lambda_{2,j}}{\sin^2 \vartheta} \right)^{-1} d\vartheta = \\ &\leq \frac{1}{2} \prod_{i=1}^{r_1} \frac{1}{1 + \lambda_{1,i}} \prod_{j=1}^{r_2} \frac{1}{1 + \lambda_{2,j}} \end{split}$$

by taking $\sin^2artheta=1$

ftw.

Paolo Castiglione and Thomas Zemen

April 14, 2011 34 / 47

Pairwise Error Probability VIII

Autocorrelation matrices for the 4 cases¹³ [3, (10)(15)-(17)]

• coop:
$$\mathbf{R}_{\mathbf{c}}(\Theta = 1) = \begin{bmatrix} [\mathbf{R}_{\mathbf{c},1}]_{d_1 \times d_1} & \mathbf{0} \\ \mathbf{0} & [\mathbf{R}_{\mathbf{c},2}]_{d_2 \times d_2} \end{bmatrix}$$

• no-coop: $\mathbf{R}_{\mathbf{c}}(\Theta = 2) = \begin{bmatrix} [\mathbf{R}_{\mathbf{c},1}]_{d_1 \times d_1} & [\mathbf{R}_{\mathbf{c},1}]_{d_1 \times d_2} \\ [[\mathbf{R}_{\mathbf{c},1}]_{d_1 \times d_2}]^{\mathrm{H}} & [\mathbf{R}_{\mathbf{c},1}]_{d_2 \times d_2} \end{bmatrix}$
• disadvantageous partial coop: $\mathbf{R}_{\mathbf{c}}(\Theta = 3) = \begin{bmatrix} \mathbf{R}_{\mathbf{c},1} \end{bmatrix}_{d_1 \times d_1}$
• advantageous partial coop: $\mathbf{R}_{\mathbf{c}}(\Theta = 4) = \begin{bmatrix} \mathbf{R}_{\mathbf{c}}(\Theta = 2) & \mathbf{0}_{d \times d_2} \\ \mathbf{0}_{d_2 \times d} & [\mathbf{R}_{\mathbf{c},2}]_{d_2 \times d_2} \end{bmatrix}$

¹³denoting the MS' uplink channel as channel-1 and the partner's uplink channel as channel-2. $[\mathbf{R}_{c,1}]_{d_1 \times d_1}$: autocorrelation of the channel-1 gains $\tilde{\mathbf{h}}_{1,d_1}$ associated to the first frame d_1 error bits of c; $[\mathbf{R}_{c,1}]_{d_2 \times d_2}$: autocorrelation of the channel-1 gains $\tilde{\mathbf{h}}_{1,d_1}$ associated to the second frame d_2 error bits; $[\mathbf{R}_{c,2}]_{d_2 \times d_2}$ autocorrelation of the channel-2 gains $\tilde{\mathbf{h}}_{2,d_2}$ associated to the second frame d_2 error bits; $[\mathbf{R}_{c,2}]_{d_2 \times d_2}$ autocorrelation of the channel-2 gains $\tilde{\mathbf{h}}_{2,d_2}$ associated to the second frame d_2 error bits; $[\mathbf{R}_{c,1}]_{d_1 \times d_2}$: cross-correlation between the gains $\tilde{\mathbf{h}}_{1,d_1}$ and the gains $\tilde{\mathbf{h}}_{1,d_2}$.

Paolo Castiglione and Thomas Zemen

ttw

April 14, 2011 35 / 47

April 14, 2011 33 / 47

Diversity order I

Normalizing $[\mathbf{R}_{\mathbf{c},1}]_{d_1 \times d_1}$ and $[\mathbf{R}_{\mathbf{c},2}]_{d_2 \times d_2}$ by the corresponding uplink average SNR, $\bar{\gamma}_1$ and $\bar{\gamma}_2$ respectively, the eigenvalues become $\widehat{\boldsymbol{\lambda}} = [\widehat{\boldsymbol{\lambda}}_1^{\mathrm{T}}, \widehat{\boldsymbol{\lambda}}_2^{\mathrm{T}}]^{\mathrm{T}}, \text{ where } \widehat{\boldsymbol{\lambda}}_{i \in \{1,2\}} = \begin{bmatrix} \overline{\lambda_{i,1}} \\ \overline{\gamma_i}, \dots, \frac{\lambda_{i,r_i}}{\overline{\gamma_i}} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \widehat{\lambda}_{i,1}, \dots, \widehat{\lambda}_{i,r_i} \end{bmatrix}^{\mathrm{T}}.$ Scaling the average SNR to infinity:

$$\lim_{\bar{\gamma}\to\infty} P(\mathbf{c}) \leq \lim_{\bar{\gamma}\to\infty} \frac{1}{2} \prod_{i=1}^{r-r_1+r_2} \frac{1}{1+\hat{\lambda}_i \bar{\gamma}} = \frac{1}{2} \prod_{i=1}^r \frac{1}{\hat{\lambda}_i \bar{\gamma}} = \operatorname{const} \cdot \left(\frac{1}{\bar{\gamma}}\right)^r$$

ttw.

ftw.

April 14, 2011 38 / 47

ftw.

April 14, 2011 37 / 47

Paolo Castiglione and Thomas Zemen

• Spatial diversity vs. temporal diversity

Diversity order II

$$\lim_{ar{\gamma}
ightarrow\infty} P_{ ext{b}} \leq ext{const} \cdot \left(rac{1}{ar{\gamma}}
ight)^{\Psi}$$

where Ψ is the diversity order achieved in a convolutional coded transmission over a correlated Rayleigh fading channel. Being \mathcal{E}_{all} the set of all the error events **c** of the convolutional code, the diversity order is:

$$\Psi = \min_{\mathbf{c} \in \mathcal{E}_{\mathrm{all}}} r$$

If $\mathbf{R}_{\mathbf{c}}$ is non-singular for every \mathbf{c} , the diversity order is equal to d_{free} .

Finite SNR diversity

Paolo Castiglione and Thomas Zemen

For practical purposes it is more interesting to define a *finite SNR* diversity order $\Psi_{\text{eff}}(\bar{\gamma})$, achievable for SNR $\simeq \bar{\gamma}$. It is possible to derive empirically an *effective* rank $r_{\rm eff}$, that is the number of eigenvalues $\lambda_i = \bar{\gamma} \hat{\lambda}_i \gg 1$, with $i \in \{1, \ldots, r_{\text{eff}}\}$:

$$P(\mathbf{c}) \leq \frac{1}{2} \prod_{j=r_{\rm eff}+1}^{r} \frac{1}{1+\hat{\lambda}_{j}\bar{\gamma}} \prod_{i=1}^{r_{\rm eff}} \frac{1}{\hat{\lambda}_{i}\bar{\gamma}}$$

$$P(\mathbf{c}) \text{ decreases at least with } \left(\frac{1}{\bar{\gamma}}\right)^{r_{\rm eff}}. \text{ The finite SNR diversity order is lower-bounded:}$$

$$\Psi_{ ext{eff}}(ar{\gamma}) \geq \min_{oldsymbol{c} \in \mathcal{E}_{ ext{all}}} r_{ ext{eff}}\left(oldsymbol{c}
ight)$$

Paolo Castiglione and Thomas Zemen

 $P(\mathbf{c})$

April 14, 2011 39 / 47

ttw

• At finite SNR, the slope (diversity) decreases with increasing p

April 14, 2011 41/47

Paolo Castiglione and Thomas Zemen

Results: Realistic Time-Variability

• Results and *cooperative regions*

- Rate R = 1/3
- $\bullet\,$ carrier frequency $f_{\rm C}=5.2\,\,{\rm GHz}$
- symbol duration $T_{
 m S}=10\,\mu{
 m s}$
- frame length M = 192 symbols

Figure source: [3, Fig. 9]

coded cooperation advantageous up to $\mathrm{TBP} \simeq 3 \iff v \simeq 160 \ \mathrm{km/h}$ in the *finite SNR* regime (perfect inter-MS detection)

Results: Cooperative Regions

Paolo Castiglione and Thomas Zemen

• The *cooperative region*: collection of mobility (TBP) and channel $(\bar{\gamma}, p)$ settings for which coded cooperation is beneficial

Figure source: [3, Fig. 11]

- Increasing *p*, the cooperative region decreases
- Increasing $\bar{\gamma},$ the cooperative region decreases
- At high velocities, the performance is dominated by the worst case of cooperation

Results: Fading Asymmetries

- Mobility asymmetry (β) affects the performance
- In general, long-term statistics unbalances are drawbacks for cooperative diversity!

Figure source: [3, Fig. 12]

ftw.

April 14, 2011 45 / 47

Paolo Castiglione and Thomas Zemen

References I

A. Chakrabarti, E. Erkip, A. Sabharwal, and B. Aazhang, "Code design for cooperative communications," *IEEE Signal Process. Mag.*, pp. 16–26, September 2007.
 T. E. Hunter and A. Nosratinia, "Cooperation diversity through coding," *Proc. IEEE ISIT*, July 2002, p. 220.
 P. Castiglione, M. Nicoli, S. Savazzi and T. Zemen, "Cooperative regions for coded cooperation over time-varying fading channels," *Proc. of Int. ITG/IEEE Workshop on Smart Antennas (WSA 2009)*, Berlin,

Germany, February 16-19, 2009

Paolo Castiglione and Thomas Zemen

Conclusions

April 14, 2011 46 / 47

• For MSs moving at high speeds (\gtrsim 40 km/h), the inter-MS channel quality plays a significant role in the definition of the *cooperative region*

This is contrary to what has been shown for quasi-static channels!

• Benefits of coded cooperation in high mobility scenarios arise for those applications where energy efficiency (for low SNR, e.g. $\lesssim 10\,{\rm dB})$ is a key issue

Paolo Castiglione and Thomas Zemen

ItW.

April 14, 2011 47 / 47