Outline

Last Time, Lecture 5

- Towards practical implementations
- Gaussian (half-duplex) relay channel
- Degraded relay channel

Decode-and-forward (DF)

- Low density parity check (LDPC) codes

Today, Lecture 6

- Coded Cooperation
- Introduction for the block fading case and links to decode-and-forward
- Rate-compatible puncture convolutional (RCPC) codes
- Cooperation scheme
- Time-variant fading channel
- Union bound and pairwise error probability (PEP)
- Spatial diversity vs. temporal diversity
- Results and cooperative regions
- Introduction for the block fading case and links to decode-and-forward

Relay Channel Model Reprise II

Gaussian relay channel model (cf. Lecture 7):

$$
\begin{gathered}
V_{1}=h_{S R} X_{1}+N_{R_{1}}, \quad Y_{1}=h_{S D} X_{1}+N_{D_{1}} \\
Y_{2}=h_{S D} X_{2}+h_{R D} W_{2}+N_{D_{2}}
\end{gathered}
$$

Variable naming convention:

- $X \ldots$ signal transmitted by the source
- V... signal received by the relay
- W... signal transmitte by the relay
- $Y \ldots$ signal received by the destination
- subscript $\cdot 1$... BC mode
- subscipt 2 ... MAC mode
- SR channel ... source-relay channel

Coded Cooperation I

New situation

- Two (not too distant) users want to communicate to the same base station
- No dedicated relay is present
- Can this two users help each other to obtain better diversity?

ftw.

Decode-and-Forward (DF) Relay Coding

Basic idea

- The source transmission is first decoded by the relay
- The relay helps then the destination by transmitting additional information about the codeword.
- Different code families can be utilized for relaying
- convolutional codes [1][3](and other non-iterative linear codes)
- turbo codes
- low density parity check (LDPC) codes [2]
- Coded cooperation, a variant of DF, achieves spatial diversity at no bandwidth/power/rate costs: no repetition!
More efficient than basic Decode-\&-Forward

Coded Cooperation II

Basic idea

- Assume a baseline wireless system using a rate- R channel code
- Coded cooperation uses the same overall rate by just re-arranging the coded symbols of the two users
- K information bits per block and N coded bits per block, $R=K / N$
- Divide each codeword into two segments of length N_{1} and N_{2},
$N_{1}+N_{2}=N$.

Figure source: [2, Fig. 1]

Coded Cooperation III

- First segment:
- sub-codeword of rate $R_{1}=K / N_{1}$ is broadcasted by the user and received to varying degree by base station and partner.
- Each user will receive a noisy version of the coded message from its partner
- Second segment:
- Correct decoding can be checked by cyclic redundancy check (CRC)
- In case of correct decoding the N_{2} additional parity bits for the partner are computed and transmitted
- otherwise N_{2} additional partiy bits for users own data are transmitted

Figure source: [2, Fig. 1]

Coded Cooperation V

Coded Cooperation IV

- 4 configurations of the punctured bits transmission in the II frame (depending on the success of the inter-user detection)

ftw.

Coded Cooperation VI

Performance for block fading channels (slow fading)

Figure source: [2, Fig. 3]

$$
\mathbf{x}=C(\mathbf{u})=\left[\begin{array}{l}
\mathbf{x}_{\mathbf{c}} \\
\mathbf{x}_{\mathrm{p}}
\end{array}\right]
$$

The rate-compatibility restriction on the puncturing tables ensures that all code bits of the higher rate $R_{1}=\frac{K}{N_{1}}$ code are used by the lower rate $R=\frac{K}{N}$ code. ${ }^{1}$
${ }^{1}$ A RCPC code is almost as good as the best known general convolutional code of the respective rate.
Source bits: $\mathbf{u}=\left[u_{0}, \ldots, u_{K}\right]^{T} \in\{ \pm 1\}$;
coded bits: $\mathbf{x}=\left[x_{0}, \ldots, x_{N-1}\right]^{\mathrm{T}} \in\{ \pm 1\}$;
rate- R_{1} code: $\mathbf{x}_{\mathrm{c}}=\left[x_{c ; 0}, \ldots, x_{c ; N_{1}-1}\right]^{\mathrm{T}}$;
punctured bits: $\mathbf{x}_{\mathrm{p}}=\left[x_{\mathrm{p} ; 0}, \ldots, x_{\mathrm{p} ; N_{2}-1}\right]^{\mathrm{T}}$.

Transmitter side

- MS- i interleaves its codeword $\mathbf{x} \rightarrow \mathbf{x}_{\mathrm{I}}$. The interleaved coded bits $\mathbf{x}_{\mathrm{I}}=\left[\begin{array}{lll}x_{\mathrm{I} ; 0}, & \ldots, & x_{\mathrm{I} ; N-1}\end{array}\right]^{\mathrm{T}}$ are mapped onto $M-J$ QPSK symbols 2

$$
s_{i}[k]=\sqrt{\frac{E_{\mathrm{S}}}{2}}\left(x_{\mathrm{I} ; 2 k}+j x_{\mathrm{I} ; 2 k+1}\right)
$$

- J QPSK random pilot symbols are placed uniformly along the frame

[^0]ftw.

Soft Input Viterbi decoder I

At the input of the Viterbi decoder, the single de-interleaved code bit \tilde{y}_{n} (de-mapped from $\left.s_{i}[m]\right)^{4}$

$$
\tilde{y}_{n}=x_{n}+\tilde{z}_{n}
$$

$$
\begin{aligned}
& { }^{4} \tilde{z}_{n} \sim \mathcal{N}\left(0, \frac{\sigma_{Z}^{2}}{E_{S}\left|h_{i}[m]\right|^{2}}\right) ; \\
& n \in\left\{\begin{array}{ccc}
0, & \ldots, & N-1
\end{array}\right\} .
\end{aligned}
$$

Soft Input Viterbi decoder III

The output of the Viterbi decoder is the maximum likelihood estimate
$\tilde{\mathbf{u}}=\left[\begin{array}{lll}\tilde{u}_{0}, & \ldots, & \tilde{u}_{K}\end{array}\right]^{\mathrm{T}}$ of the encoded bits ${ }^{6}$

$$
\tilde{\mathbf{u}}=\arg \max _{\widehat{\mathbf{u}}=\mathcal{C}^{-1}(\widehat{\mathbf{x}})} P\left(\widetilde{\mathbf{y}}_{n} \mid \widehat{\mathbf{x}}\right)=\arg \max _{\widehat{\mathbf{u}}=\mathcal{C}^{-1}(\widehat{\mathbf{x}})} \mathbf{w}^{\mathrm{T}} \widehat{\mathbf{x}}
$$

[^1]Soft Input Viterbi decoder II

The soft inputs for the Viterbi decoder, given the equalized bits
$\widetilde{\mathbf{y}}_{n}=\left[\begin{array}{lll}\tilde{y}_{0}, & \ldots, & \tilde{y}_{N-1}\end{array}\right]^{\mathrm{T}}$, are the Log-Likelihood ratios (LLR)
$\mathbf{w}=\left[\begin{array}{lll}w_{0}, & \ldots, & w_{N-1}\end{array}\right]^{\mathrm{T}_{5}}$

$$
w_{n}=\log \frac{P\left(\tilde{y}_{n} \mid x_{n}=+1\right)}{P\left(\tilde{y}_{n} \mid x_{n}=-1\right)}=\log \left[\frac{\exp \left(-\frac{\left(\tilde{y}_{n}-1\right)^{2}}{2 \tilde{\sigma}_{z}^{2}}\right)}{\exp \left(-\frac{\left(\tilde{y}_{n}+1\right)^{2}}{2 \tilde{\sigma}_{z}^{2}}\right)}\right]=\frac{2 \tilde{y}_{n}}{\tilde{\sigma}_{z}^{2}}
$$

$$
{ }^{5} \tilde{\sigma}_{z}^{2}=\frac{\sigma_{\mathrm{z}}^{2}}{E_{\mathrm{S}}\left|h_{i}[m]\right|^{2}} \text { is the normalized noise variance }
$$

- The RCPC code is punctured
- An error detection code (e.g. CRC) avoids error propagation: the partner's punctured bits are transmitted only if the detection is successful

- Assumption:
- Time-variant fading channel

Multipath Propagation

v velocity
p path
η_{p} attenuation
τ_{p} time delay
f_{p} Doppler shift
P number of paths (scatterers)
ϕ_{p} angle of departure
f_{c} carrier frequency
c_{0} speed of light

Time-variant channel impulse response

$$
h(t, \tau)=\sum_{p=0}^{P-1} \eta_{p} \mathrm{e}^{\mathrm{j}^{2 \pi} f_{p} t} \delta\left(\tau-\tau_{p}\right), \quad f_{p}=\frac{v \cos \phi_{p} f_{c}}{c_{0}}
$$

The time-bandwidth product [max Doppler shift \times codeword duration] measures the temporal variability

$$
\mathrm{TBP}_{i}=\frac{f_{\mathrm{c}} v_{i}}{c_{0}} \cdot 2 M \cdot T_{\mathrm{s}}
$$

- Frequency-flat Rayleigh fading uplink channels $h_{i}[m]$
- Clarke's autocorrelation function ($\uparrow \mathrm{TBP} \Leftrightarrow \uparrow$ decorrelation)

$$
R_{i}[k]=\mathbb{E}\left\{h_{i}[m] h_{i}^{*}[m+k]\right\}=\bar{\gamma}_{i} J_{0}\left(\pi k \cdot \mathrm{TBP}_{i} / M\right)
$$

where $\bar{\gamma}_{i}$ is the average SNR
ftw.

- Union bound and pairwise error probability (PEP)

Channel Model: Inter-MS link

- Independent inter-MS channels
- Inter-MS block error rate p^{7}

${ }^{7}$ The probability of successful coded cooperation is $(1-p)^{2} .$.

Union bound

The average BER at the output ofthe Viterbi decoder at the receiver-side is upperbounded

$$
P_{\mathrm{b}} \leq \sum_{\Theta=1}^{4} \operatorname{Pr}(\Theta)\left[\frac{1}{k} \sum_{d \geqq d_{\mathrm{free}}} \sum_{\mathbf{c} \in \mathcal{E}(d)} w(\mathbf{c}) P(\mathbf{c} \mid \Theta)\right]
$$

The average PEP $P(\mathbf{c})$ depends on the fading statistics, while the values of the other parameters are fixed by the code. ${ }^{8}$

[^2] convolutional code trellis; $d_{\text {free }}$: minimum Hamming distance between the codewords; $\mathcal{E}(d)$: set of error events \mathbf{c} at a certain Hamming distance d from the all-zero codeword; $w(\mathbf{c})$: Hamming weight of the input sequence corresponding to $\mathbf{c} ; P(\mathbf{c})$: ftW. average pairwise error probability (PEP).

Pairwise Error Probability I

The average PEP is the probability of receiving the codeword $\mathbf{y}=\mathbf{x}+\mathbf{c}$ instead of the transmitted \mathbf{x}. Also defined, due to the linearity of the convolutional codes, as the probability of receiving \mathbf{c} (error event) instead of the all-zero codeword.

The PEP is averaged with respect to the probability density function of the effective $\operatorname{SNR} \gamma_{\mathrm{eff}}{ }^{9}$

$$
P(\mathbf{c})=\int_{0}^{\infty} Q\left(\sqrt{2 \gamma_{\mathrm{eff}}}\right) P\left(\gamma_{\mathrm{eff}}\right) d \gamma_{\mathrm{eff}}
$$

$$
\begin{aligned}
& { }^{9} \gamma_{\text {eff }}=\sum_{k \in \mathcal{T}_{\mathrm{c}}} \gamma(k)=\sum_{k \in \mathcal{T}_{\mathrm{c}}} \frac{\mathrm{E}_{\mathrm{s}}\left|h_{i}(k)\right|^{2}}{\sigma_{z}^{2}}=\|\widetilde{\mathbf{h}}\|^{2} \\
& \mathcal{T}_{\mathbf{c}}=\left\{\tau_{\mathbf{c}, 1}, \ldots, \tau_{\mathbf{c}, d}\right\}: \text { set of time instants associated with } \mathbf{c} \text {; } \\
& \gamma_{\mathbf{c}}=\left[\begin{array}{lll}
\gamma\left(\tau_{\mathbf{c}, 1}\right), & \ldots, & \gamma\left(\tau_{\mathbf{c}, d}\right)
\end{array}\right]^{\mathrm{T}}: \text { the corresponding instantaneous SNR; } \\
& \widetilde{\mathbf{h}}=\frac{\sqrt{E_{\mathrm{s}}}}{\sigma_{z}}\left[\begin{array}{lll}
h\left(\tau_{\mathbf{c}, 1}\right), & \ldots, & h\left(\tau_{\mathbf{c}, d}\right)
\end{array}\right]^{\mathrm{T}} .
\end{aligned}
$$

Pairwise Error Probability III

The d error bits are split into two groups, d_{1} and d_{2}, coming from the
MS's and the partner's independent uplink channels $i \in\{1,2\}$,
respectively at time instants $\mathcal{T}_{\mathbf{c} ; i}=\left\{\tau_{\mathbf{c}, 1 ; i}, \ldots, \tau_{\mathbf{c}, d_{i} ; i}\right\}$. The
autocorrelation of
$\widetilde{\mathbf{h}}=\frac{\sqrt{E_{\mathrm{s}}}}{\sigma_{\mathrm{z}}}\left[h_{1}\left(\tau_{\mathbf{c}, 1 ; 1}\right), \ldots, h_{1}\left(\tau_{\mathbf{c}, d_{1} ; 1}\right), h_{2}\left(\tau_{\mathbf{c}, 1 ; 2}\right), \ldots, h_{2}\left(\tau_{\mathbf{c}, d_{2} ; 2}\right)\right]^{\mathrm{T}}$ becomes 12

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{c}}=\left[\begin{array}{cc}
{\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{1}}} & \mathbf{0} \\
\mathbf{0} & {\left[\mathbf{R}_{\mathbf{c}, 2}\right]_{d_{2} \times d_{2}}}
\end{array}\right]_{d \times d}= \\
&=\left[\begin{array}{cc}
\mathbf{U}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Lambda}_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Lambda}_{2}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{U}_{1}^{\mathrm{H}} & \mathbf{0} \\
\mathbf{0} & \mathbf{U}^{\mathrm{H}}
\end{array}\right]
\end{aligned}
$$

[^3][^4]
Pairwise Error Probability II

$\gamma_{\text {eff }}$ is the sum of d correlated exponential random variables, whose autocorrelation is $\mathbf{R}_{\mathbf{c}}=\mathbb{E}\left[\widetilde{\mathbf{h}} \tilde{\mathbf{h}}^{\mathrm{H}}\right]$. ${ }^{10}$ Through an eigenvalue decomposition (EVD), the effective SNR becomes the sum of r uncorrelated exponential random variables $\left\{b_{k}^{2}\right\}_{k=1}^{r}{ }^{11}$

$$
\gamma_{\mathrm{eff}}=\|\widetilde{\mathbf{h}}\|^{2}=\sum_{k=1}^{r} b_{k}^{2}=\|\mathbf{b}\|^{2}
$$

where $\mathbf{b}=\mathbf{U}^{\mathrm{H}} \widetilde{\mathbf{h}}=\left[b_{1} \ldots b_{r}\right]^{\mathrm{T}}$ is the linear projection of the channel onto the r-dimensional column-space of $\mathbf{R}_{\mathbf{c}}$
${ }^{10}$ For its definition and for the stationarity of $\mathbf{R}_{\mathbf{c}}$ the fading process, the elements on the diagonal of \mathbf{R}_{c} are equal to the average $\operatorname{SNR} \bar{\gamma}=\Omega \frac{E_{\mathrm{s}}}{\sigma_{\mathrm{Z}}^{2}}$,where $\Omega=\mathbb{E}\left\{|h[m]|^{2}\right\}$ ${ }^{11} r=\operatorname{rank}\left\{\mathbf{R}_{\mathrm{c}}\right\}$;
$\mathbf{U}: d \times r$ matrix containing the eigenvectors of \mathbf{R}_{c}

Pairwise Error Probability IV

Fading affecting the error event

Possible error event $\boldsymbol{c}: . . .1,1$

Pairwise Error Probability V

Moment Generating Function (MGF) method
The pdf of the effective SNR exhibits the MGF

$$
\mathbf{M}_{\gamma_{\mathrm{eff}}}(s)=\int_{0}^{\infty} e^{s \gamma_{\mathrm{eff}}} P\left(\gamma_{\mathrm{eff}}\right) d \gamma_{\mathrm{eff}}=\prod_{i=1}^{r_{1}} \frac{1}{1-\lambda_{1, i}} \prod_{j=1}^{r_{2}} \frac{1}{1-\lambda_{2, j} s}
$$

Since $Q(x)=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\frac{x^{2}}{2 \sin ^{2} \vartheta}} d \vartheta$, the PEP becomes

$$
\begin{aligned}
P(\mathbf{c}) & =\int_{0}^{\infty} Q\left(\sqrt{2 \gamma_{\mathrm{eff}}}\right) P\left(\gamma_{\mathrm{eff}}\right) d \gamma_{\mathrm{eff}}=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}}\left[\int_{0}^{\infty} e^{-\frac{\gamma_{\mathrm{eff}}}{\sin ^{2} \vartheta}} P\left(\gamma_{\mathrm{eff}}\right) d \gamma_{\mathrm{eff}}\right] d \vartheta \\
& =\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \mathbf{M}_{\gamma_{\mathrm{eff}}}\left(-\frac{1}{\sin ^{2} \vartheta}\right) d \vartheta=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{r_{1}}\left(1+\frac{\lambda_{1, i}}{\sin ^{2} \vartheta}\right)^{-1} \prod_{j=1}^{r_{2}}\left(1+\frac{\lambda_{2, j}}{\sin ^{2} \vartheta}\right)^{\mathbf{f t W}}
\end{aligned}
$$

Pairwise Error Probability VII

Interleaver

The $d=d_{1}+d_{2}$ non-zero bits of the error event \mathbf{c} can appear within the two time frames in several possible configurations, each
corresponding to a different, but equivalent, shift of \mathbf{c} at theinput of the Viterbi decoder. Thus, $P(\mathbf{c}) \leq P\left(\mathbf{c}_{\mathbf{p}}\right)$, where $\mathbf{c}_{\mathbf{p}}$ is the most probable among the equivalent translations of \mathbf{c}.

Pairwise Error Probability VI

Upperbound on the PEP [3, (12)-(13)]

$$
\begin{aligned}
P(\mathbf{c}) & =\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{r_{1}}\left(1+\frac{\lambda_{1, i}}{\sin ^{2} \vartheta}\right)^{-1} \prod_{j=1}^{r_{2}}\left(1+\frac{\lambda_{2, j}}{\sin ^{2} \vartheta}\right)^{-1} d \vartheta= \\
& \leq \frac{1}{2} \prod_{i=1}^{r_{1}} \frac{1}{1+\lambda_{1, i}} \prod_{j=1}^{r_{2}} \frac{1}{1+\lambda_{2, j}}
\end{aligned}
$$

by taking $\sin ^{2} \vartheta=1$

Pairwise Error Probability VIII

Autocorrelation matrices for the 4 cases $^{13}{ }_{[3,(10)(15)-(17)]}$

$$
\text { - coop: } \mathbf{R}_{\mathbf{c}}(\Theta=1)=\left[\begin{array}{cc}
{\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{1}}} & \mathbf{0} \\
\mathbf{0} & {\left[\mathbf{R}_{\mathbf{c}, 2}\right]_{d_{2} \times d_{2}}}
\end{array}\right]
$$

$$
\text { - no-coop: } \mathbf{R}_{\mathbf{c}}(\Theta=2)=\left[\begin{array}{cl}
{\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{1}}} & {\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{2}}} \\
{\left[\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{2}}\right]^{\mathrm{H}}} & {\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{2} \times d_{2}}}
\end{array}\right]
$$

- disadvantageous partial coop: $\mathbf{R}_{\mathbf{c}}(\Theta=3)=\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{1}}$
- advantageous partial coop: $\mathbf{R}_{\mathbf{c}}(\Theta=4)=\left[\begin{array}{cc}\mathbf{R}_{\mathbf{c}}(\Theta=2) & \mathbf{0}_{d \times d_{2}} \\ \mathbf{0}_{d_{2} \times d} & {\left[\mathbf{R}_{\mathbf{c}, 2}\right]_{d_{2} \times d_{2}}}\end{array}\right]$
${ }^{13}$ denoting the MS' uplink channel as channel-1 and the partner's uplink channel as channel-2. $\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{1}}$: autocorrelation of the channel- 1 gains $\widetilde{\mathbf{h}}_{1, d_{1}}$ associated to the first frame d_{1} error bits of $\mathbf{c} ;\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{2} \times d_{2}}$: autocorrelation of the channel-1 gains $\widetilde{\mathbf{h}}_{1, d_{2}}$ associated to the second frame d_{2} error bits; $\left[\mathbf{R}_{\mathbf{c}, 2}\right]_{d_{2} \times d_{2}}$ autocorrelation of the channel-2 gains $\widetilde{\mathbf{h}}_{2, d_{2}}$ associated to the second frame d_{2} error bits; $\left[\mathbf{R}_{\mathrm{c}, 1}\right]_{d_{1} \times d_{2}}$: cross-correlation between the gains $\widetilde{\mathbf{h}}_{1, d_{1}}$ and the gains $\widetilde{\mathbf{h}}_{1, d_{2}}$.
- Spatial diversity vs. temporal diversity

Diversity order II

$$
\lim _{\bar{\gamma} \rightarrow \infty} P_{\mathrm{b}} \leq \text { const } \cdot\left(\frac{1}{\bar{\gamma}}\right)^{\psi}
$$

where Ψ is the diversity order achieved in a convolutional coded transmission over a correlated Rayleigh fading channel.
Being $\mathcal{E}_{\text {all }}$ the set of all the error events \mathbf{c} of the convolutional code, the diversity order is:

$$
\Psi=\min _{\mathbf{c} \in \mathcal{E}_{\text {all }}} r
$$

If $\mathbf{R}_{\mathbf{c}}$ is non-singular for every \mathbf{c}, the diversity order is equal to $d_{\text {free }}$.

Normalizing $\left[\mathbf{R}_{\mathbf{c}, 1}\right]_{d_{1} \times d_{1}}$ and $\left[\mathbf{R}_{\mathrm{c}, 2}\right]_{d_{2} \times d_{2}}$ by the corresponding uplink average SNR, $\bar{\gamma}_{1}$ and $\bar{\gamma}_{2}$ respectively, the eigenvalues become
$\widehat{\boldsymbol{\lambda}}=\left[\hat{\boldsymbol{\lambda}}_{1}^{\mathrm{T}}, \hat{\boldsymbol{\lambda}}_{2}^{\mathrm{T}}\right]^{\mathrm{T}}$, where $\widehat{\boldsymbol{\lambda}}_{i \in\{1,2\}}=\left[\frac{\lambda_{i, 1}}{\bar{\gamma}_{i}}, \ldots, \frac{\lambda_{i, r_{i}}}{\bar{\gamma}_{i}}\right]^{\mathrm{T}}=\left[\hat{\lambda}_{i, 1}, \ldots, \hat{\lambda}_{i, r_{1}}\right]^{\mathrm{T}}$
Scaling the average SNR to infinity:

$$
\lim _{\bar{\gamma} \rightarrow \infty} P(\mathbf{c}) \leq \lim _{\bar{\gamma} \rightarrow \infty} \frac{1}{2} \prod_{i=1}^{r=r_{1}+r_{2}} \frac{1}{1+\hat{\lambda}_{i} \bar{\gamma}}=\frac{1}{2} \prod_{i=1}^{r} \frac{1}{\hat{\lambda}_{i} \bar{\gamma}}=\text { const } \cdot\left(\frac{1}{\bar{\gamma}}\right)^{r}
$$

Finite SNR diversity

For practical purposes it is more interesting to define a finite SNR diversity order $\Psi_{\text {eff }}(\bar{\gamma})$, achievable for $\operatorname{SNR} \simeq \bar{\gamma}$. It is possible to derive empirically an effective rank $r_{\text {eff }}$, that is the number of eigenvalues $\lambda_{i}=\bar{\gamma} \hat{\lambda}_{i} \gg 1$, with $i \in\left\{1, \ldots, r_{\text {eff }}\right\}:$

$$
P(\mathbf{c}) \leq \frac{1}{2} \prod_{j=r_{\mathrm{eff}}+1}^{r} \frac{1}{1+\hat{\lambda}_{j} \bar{\gamma}} \prod_{i=1}^{r_{\mathrm{eff}}} \frac{1}{\hat{\lambda}_{i} \bar{\gamma}}
$$

$P(\mathbf{c})$ decreases at least with $\left(\frac{1}{\bar{\gamma}}\right)^{r_{\text {eff }}}$. The finite SNR diversity order is lower-bounded:

$$
\Psi_{\mathrm{eff}}(\bar{\gamma}) \geq \min _{\mathbf{c} \in \mathcal{E}_{\text {all }}} r_{\mathrm{eff}}(\mathbf{c})
$$

- Results and cooperative regions

ftw.

Results: Realistic Time-Variability

- Rate $R=1 / 3$
- carrier frequency $f_{\mathrm{C}}=5.2 \mathrm{GHz}$
- symbol duration $T_{\mathrm{S}}=10 \mu \mathrm{~s}$
- frame length $M=192$ symbols

Figure source: [3, Fig. 9]
coded cooperation advantageous up to
$\mathrm{TBP} \simeq 3 \Longleftrightarrow v \simeq 160 \mathrm{~km} / \mathrm{h}$
in the finite SNR regime
(perfect inter-MS detection)

Figure source: [3, Fig. 10]

- From BF $\left(\mathrm{TBP}_{i}=\frac{f_{c} v_{i}}{c_{0}} \cdot 2 M \cdot T_{\mathrm{s}}=0\right)$ to $\mathrm{FF}\left(\mathrm{TBP}_{i} \Rightarrow \infty\right)$

- At finite SNR, the slope (diversity) decreases with increasing p

Results: Cooperative Regions

- The cooperative region: collection of mobility (TBP) and channel
($\bar{\gamma}, p$) settings for which coded cooperation is beneficial

Figure source: [3, Fig. 11]

- Increasing p, the cooperative region decreases
- Increasing $\bar{\gamma}$, the cooperative region decreases
- At high velocities, the performance is dominated by the worst case of cooperation

Results: Fading Asymmetries

- Mobility asymmetry (β) affects the performance
- In general, long-term statistics unbalances are drawbacks for cooperative diversity!

Figure source: [3, Fig. 12]

- For MSs moving at high speeds ($\gtrsim 40 \mathrm{~km} / \mathrm{h}$), the inter-MS channel quality plays a significant role in the definition of the cooperative region
This is contrary to what has been shown for quasi-static channels!
- Benefits of coded cooperation in high mobility scenarios arise for those applications where energy efficiency (for low SNR, e.g. $\lesssim 10 \mathrm{~dB})$ is a key issue

References I

[1] A. Chakrabarti, E. Erkip, A. Sabharwal, and B. Aazhang, "Code design for cooperative communications," IEEE Signal Process. Mag., pp.
16-26, September 2007.
[2] T. E. Hunter and A. Nosratinia, "Cooperation diversity through coding," Proc. IEEE ISIT, July 2002, p. 220.
[3] P. Castiglione, M. Nicoli, S. Savazzi and T. Zemen,"Cooperative
regions for coded cooperation over time-varying fading channels," Proc.
of Int. ITG/IEEE Workshop on Smart Antennas (WSA 2009), Berlin,
Germany, February 16-19, 2009
ftw.

[^0]: ${ }^{2} E_{\mathrm{S}}$: transmitted energy per QPSK symbol; $k \in\{0, \ldots, M-J-1\}$.

[^1]: ${ }^{6} \hat{\mathbf{x}}=\left[\begin{array}{lll}\hat{x}_{0}, & \ldots, & \hat{x}_{N-1}\end{array}\right]^{\mathrm{T}} \in\{ \pm 1\}$ is a valid RCPC codeword generated from a possible source block $\widehat{\mathbf{u}}$

[^2]: ${ }^{8} \operatorname{Pr}(\Theta)$: probability of case $\Theta ; k$: number of input bits for each branch of the

[^3]: ${ }^{12}$ Thereby, the eigenvalues of \mathbf{R}_{c} are $\boldsymbol{\lambda}=\left[\boldsymbol{\lambda}_{1}^{\mathrm{T}}, \boldsymbol{\lambda}_{2}^{\mathrm{T}}\right]^{\mathrm{T}}$, where $\boldsymbol{\lambda}_{i}=\left[\lambda_{1,1}, \ldots, \lambda_{1, r}\right]^{\mathrm{T}} \mathbf{f} \mathbf{t}$.

[^4]: are the eigenvalues of the respective submatrices $\mathbf{R}_{\mathrm{c}, i}$ with rank r_{i}
 Castiglione and Thomas Zemen

