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Introduction

Local clocks at different nodes separated by (large) distances
Synchronization: achieving and maintaining coordination among
these local clock via exchange of local time information [1]

Synchronization schemes classification by method used for
encoding,

exchange, and

processing

of information.
Wireless communication in decentralized cooperative communication
networks and sensor networks heavily rely on synchronization.
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Brief History

19th century - synchronization of distant clock to a reference time
(unidirectional or master-slave synchronization)

implemented by telegraphy and later by wireless transmission

applications enabled

railroad transport
geodesy (meas. of longitude)
localization

20th century - spontaneous synchronization in nature as role model
Fireflies

activity of muscle fibres

clapping in a concert hall

Thomas Zemen, Nicolai Czink May 12, 2011 4 / 31



Wireless Networks I

INTRODUCTION
Synchronization refers to the process of achieving and maintain-
ing coordination among independent local clocks via the
exchange of local time information. Different synchronization
schemes differ in the way such information is encoded,
exchanged, and processed by the clocks toward the end of over-
coming the unavoidable nuisance effects of inaccurate clocks and
propagation/processing delays. Wireless communications provide
the natural platform for the exchange of local time information
between synchronizing clocks. Conversely, synchronization of
local clocks enables a wealth of signal processing and communi-
cation applications in wireless networks. It is this mutual link
between synchronization and wireless networks, with emphasis
on decentralized structures such as ad hoc and sensor networks,
that constitutes the main subject of this article. 

A BRIEF HISTORY OF MUTUAL 
TIME SYNCHRONIZATION
By the end of the 19th century, synchronization of a distant clock
to a reference time, also referred to as unidirectional or master-
slave synchronization, became a standard engineering procedure
thanks, first, to the advances in telegraphy and, later, wireless
transmission. Railroad transportation, geodesy (measurement of
longitude), and localization were just a few of the applications
enabled by this pervasive new technology. Synchronization of a
pair of distant clocks easily qualifies as an early signal processing
problem in the context of wired or wireless communications: esti-
mate the time offset between two clocks from measurements
affected by propagation delays and random hardware (and human)
imperfections [1]. The idea of synchronized time spurred an
intense debate in physics and philosophy that eventually produced
Einstein’s theory of relativity [1]. In this regard, it is interesting to
quote H. Poincaré: “Simultaneously is a convention, nothing more
than the coordination of clocks by a cross exchange of electromag-
netic signals taking into account the transit time of the signal.”

In the years following these efforts, scientists wondered at
the evidence of synchronization among distributed periodic
events in a number of natural phenomena. As late as 1961, Joy
Adamson wrote in awe of the observation of the synchronous
flashing of fireflies [2]: 

a great belt of light, some ten feet wide, formed by thou-
sands upon thousands of fireflies . . . the fluorescent band
composed of these tiny organisms lights up and goes out
with a precision that is perfectly synchronized, and one is
left wondering what means of communications they pos-
sess which enables them to coordinated their shining as
though controlled by a mechanical device. 
Other typical examples of spontaneous synchrony are the

activity of individual fibers in heart muscles to produce the
heartbeat or the synchronous hand clapping in a concert hall
[2], [3]. Analytical modeling of the dynamic establishment of
synchrony, even in the simplest abstractions of such scenarios,
challenged mathematical biologists for decades and culminated
in the landmark work by Winfree in 1967 [4] and later
Kuramoto [5]. It was followed by more recent analyses of
Crawford (see [6] and [7] for reviews and references), Mirollo,
and Strogatz [8]. In parallel, the communications community
started developing a theory of distributed synchronization for
telecommunications networks in the 1960s in order to support
the deployment of digital switching in the telephone network.
This work led to the theory developed by Lindsey et al. [9].

DISTRIBUTED SYNCHRONIZATION 
IN WIRELESS NETWORKS
In the area of wireless networks, cellular telephony has monopo-
lized the attention of researchers and industry for many years. In
this traditional infrastructured scenario, synchronization of
mobile stations can be achieved by exploiting a master-slave
structure with the base station broadcasting a beacon or training
signal. Applications encompass scheduling at the MAC layer and

coherent transmission/reception at the
physical layer. Distributed synchroniza-
tion based on wireless communications
plays a minor role in this context and has
been considered for frame timing syn-
chronization among base stations in [10].

More recently, distributed wireless
network structures, such as ad hoc, sen-
sor, or vehicular networks, have started to
attract significant interest. In such sce-
narios, the availability of a common time
scale, or of synchronized local oscillators,
enables a number of unique functionali-
ties at different layers of the protocol
stack. Some representative examples are: 
! signal processing applications: data
fusion of time-sensitive measurements in
distributed estimation and tracking for
monitoring or surveillance based on sen-
sor networks [11]

[FIG1] An application of synchronization in wireless networks: coordinated (synchronous)
medium access control improves spectral/energy efficiency with respect to asynchronous
solutions by avoiding collisions and idle periods.
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Figure source: [1, Fig. 1]

Examples:
Distributed estimation and data fusion in sensor networks
Multiple access schemes avoiding collisions
Cooperative transmission

space time coding

distributed beamforming
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Wireless Networks II

Classic synchronization methods:

Central access point broadcast beacon timing signal (GSM, UMTS,
IEEE 802.15.4 ZigBee)

Satellite-synchronization (oudoor)
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Distributed Synchronization

Mutual synchronization in distributed wireless networks
Problems:

Random delays between transmission and reception of a timing signal

wave propagation
processing latency

Hardware and clock inaccuracies

Specific aspects of wireless networks
Energy efficiency

Scalabillity

Application specifity
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Basics I

Definitions
ti(n) . . . nth tick (n = 0, 1, 2, . . .) of the ith clock (i = 1, 2, . . . ,N)

where N is the number of nodes
Local periods Ti = ti(n)− ti(n − 1)

Uncoupled nodes

! spectral and energy-efficient networking: coordinated
MAC schemes such as time division multiple access or vari-
ants, which overcome the shortcomings of collision-based
schemes in terms of bandwidth efficiency [12] (see Figure 1);
energy-efficient MAC that exploits sleep scheduling [13]
! cooperative transmission: collaborative transmission
through space-time coding [14], which requires mutual time
synchronization (also referred to as distributed synchroniza-
tion throughout the article) or distributed beamforming,
which demands mutual carrier synchronization [15].
If a fixed or mobile access point is available whose transmis-

sion radius covers the entire network (e.g., a mobile fusion center
in sensor networks [17]), then network synchronization can be
achieved in principle by having the access point broadcast a bea-
con timing signal, as in cellular networks.
This possibility is, for instance, enabled in
the IEEE 802.15.4 standard for sensor
networks (and associated commercial
acticity in the ZigBee alliance) [12].
Moreover, in an outdoor environment
with loose constraints on the energy con-
sumption (such as vehicular networks),
satellite-based synchronization can be
employed. However, in this article we
focus on fully distributed scenarios where
no such possibilities exist, thus making
distributed synchronization (as opposed
to master-slave point-to-point synchro-
nization via a central node) the only avail-
able solution [16].

As in the problem of synchronizing
two distant clocks through electric sig-
nals tackled in the late 19th century,
mutual synchronization in distributed
wireless networks hinges on the
exchange of local time information
between pairs of nodes. Common com-
plications of both problems are: i) the
presence of random delays between
transmission and reception of a timing
signal, which depends not only on
propagation but also on the inevitable
processing latency at both sides of the
link, and ii) hardware and clock inaccu-
racies. However, distributed synchro-
nization in wireless networks provides
a unique set of challenges for both
design and analysis, which call for a
variety of tools from signal processing,
automatic control, and algebraic graph
theory, just to mention a few.

On the one hand, designing mutual
synchronization in wireless networks
requires to account for the following spe-
cific issues:

! Energy efficiency: In the presence of battery-powered
nodes, the trade-off between energy consumption and network
performance becomes an essential merit criterion [12].
! Scalability: Certain distributed networks, such as
microsensor networks, are envisaged to be composed of a
large number of nodes, in which case well-behaved scaling
performance of synchronization is a critical issue [18].
! Application specificity: In sensor networks, performance is
defined in terms of application-specific criteria [19], thus ren-
dering the design of mutual synchronization and the given
signal processing functionality thoroughly intertwined
[20]–[22].
On the other hand, as discussed below, an analysis of the sys-

tem often requires consideration of the dynamic behavior of a

[FIG2] Clocks ti(n) for N = 3 nodes in the case of: (a) uncoupled nodes; (b) frequency-
synchronous nodes with common frequency 1/T; (c) fully synchronized nodes.
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Figure source: [1, Fig. 2 (a)]

No local timing information is exchanged, local periods Ti and phases
ti(n) differ.
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Basics II

Frequency synchronization

! spectral and energy-efficient networking: coordinated
MAC schemes such as time division multiple access or vari-
ants, which overcome the shortcomings of collision-based
schemes in terms of bandwidth efficiency [12] (see Figure 1);
energy-efficient MAC that exploits sleep scheduling [13]
! cooperative transmission: collaborative transmission
through space-time coding [14], which requires mutual time
synchronization (also referred to as distributed synchroniza-
tion throughout the article) or distributed beamforming,
which demands mutual carrier synchronization [15].
If a fixed or mobile access point is available whose transmis-

sion radius covers the entire network (e.g., a mobile fusion center
in sensor networks [17]), then network synchronization can be
achieved in principle by having the access point broadcast a bea-
con timing signal, as in cellular networks.
This possibility is, for instance, enabled in
the IEEE 802.15.4 standard for sensor
networks (and associated commercial
acticity in the ZigBee alliance) [12].
Moreover, in an outdoor environment
with loose constraints on the energy con-
sumption (such as vehicular networks),
satellite-based synchronization can be
employed. However, in this article we
focus on fully distributed scenarios where
no such possibilities exist, thus making
distributed synchronization (as opposed
to master-slave point-to-point synchro-
nization via a central node) the only avail-
able solution [16].

As in the problem of synchronizing
two distant clocks through electric sig-
nals tackled in the late 19th century,
mutual synchronization in distributed
wireless networks hinges on the
exchange of local time information
between pairs of nodes. Common com-
plications of both problems are: i) the
presence of random delays between
transmission and reception of a timing
signal, which depends not only on
propagation but also on the inevitable
processing latency at both sides of the
link, and ii) hardware and clock inaccu-
racies. However, distributed synchro-
nization in wireless networks provides
a unique set of challenges for both
design and analysis, which call for a
variety of tools from signal processing,
automatic control, and algebraic graph
theory, just to mention a few.

On the one hand, designing mutual
synchronization in wireless networks
requires to account for the following spe-
cific issues:

! Energy efficiency: In the presence of battery-powered
nodes, the trade-off between energy consumption and network
performance becomes an essential merit criterion [12].
! Scalability: Certain distributed networks, such as
microsensor networks, are envisaged to be composed of a
large number of nodes, in which case well-behaved scaling
performance of synchronization is a critical issue [18].
! Application specificity: In sensor networks, performance is
defined in terms of application-specific criteria [19], thus ren-
dering the design of mutual synchronization and the given
signal processing functionality thoroughly intertwined
[20]–[22].
On the other hand, as discussed below, an analysis of the sys-

tem often requires consideration of the dynamic behavior of a

[FIG2] Clocks ti(n) for N = 3 nodes in the case of: (a) uncoupled nodes; (b) frequency-
synchronous nodes with common frequency 1/T; (c) fully synchronized nodes.
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Ti = T
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Basics III

Full synchronization

! spectral and energy-efficient networking: coordinated
MAC schemes such as time division multiple access or vari-
ants, which overcome the shortcomings of collision-based
schemes in terms of bandwidth efficiency [12] (see Figure 1);
energy-efficient MAC that exploits sleep scheduling [13]
! cooperative transmission: collaborative transmission
through space-time coding [14], which requires mutual time
synchronization (also referred to as distributed synchroniza-
tion throughout the article) or distributed beamforming,
which demands mutual carrier synchronization [15].
If a fixed or mobile access point is available whose transmis-

sion radius covers the entire network (e.g., a mobile fusion center
in sensor networks [17]), then network synchronization can be
achieved in principle by having the access point broadcast a bea-
con timing signal, as in cellular networks.
This possibility is, for instance, enabled in
the IEEE 802.15.4 standard for sensor
networks (and associated commercial
acticity in the ZigBee alliance) [12].
Moreover, in an outdoor environment
with loose constraints on the energy con-
sumption (such as vehicular networks),
satellite-based synchronization can be
employed. However, in this article we
focus on fully distributed scenarios where
no such possibilities exist, thus making
distributed synchronization (as opposed
to master-slave point-to-point synchro-
nization via a central node) the only avail-
able solution [16].

As in the problem of synchronizing
two distant clocks through electric sig-
nals tackled in the late 19th century,
mutual synchronization in distributed
wireless networks hinges on the
exchange of local time information
between pairs of nodes. Common com-
plications of both problems are: i) the
presence of random delays between
transmission and reception of a timing
signal, which depends not only on
propagation but also on the inevitable
processing latency at both sides of the
link, and ii) hardware and clock inaccu-
racies. However, distributed synchro-
nization in wireless networks provides
a unique set of challenges for both
design and analysis, which call for a
variety of tools from signal processing,
automatic control, and algebraic graph
theory, just to mention a few.

On the one hand, designing mutual
synchronization in wireless networks
requires to account for the following spe-
cific issues:

! Energy efficiency: In the presence of battery-powered
nodes, the trade-off between energy consumption and network
performance becomes an essential merit criterion [12].
! Scalability: Certain distributed networks, such as
microsensor networks, are envisaged to be composed of a
large number of nodes, in which case well-behaved scaling
performance of synchronization is a critical issue [18].
! Application specificity: In sensor networks, performance is
defined in terms of application-specific criteria [19], thus ren-
dering the design of mutual synchronization and the given
signal processing functionality thoroughly intertwined
[20]–[22].
On the other hand, as discussed below, an analysis of the sys-

tem often requires consideration of the dynamic behavior of a

[FIG2] Clocks ti(n) for N = 3 nodes in the case of: (a) uncoupled nodes; (b) frequency-
synchronous nodes with common frequency 1/T; (c) fully synchronized nodes.
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Figure source: [1, Fig. 2 (c)]

Ti = T

and

ti(n) = tj(n), i �= j
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Packet Coupling vs. Pulse Coupling I

Packet Coupling

Periodic exchange of packets carrying time stamps containing the
local time ti(n) at the sender (point-to-point or broadcast)
Source of errors through random delays qij

packet construction

queuing at the MAC

propagation

processing at receiver side

Node i receives timing packet from node j at time ti(n) + qij

Accuracy in the order of milliseconds to microseconds can be
achieved
Large number of packets must be exchanged - limited scalability
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Packet Coupling vs. Pulse Coupling II
Pulse Coupling

Local time information is encoded in the transmission times of given
waveforms g(t)
Each nodes radiates a periodic train of waveforms

�

n
g(t − ti(n))

according to its local clock.

possibly large set of coupled oscillators, which calls for the sta-
bility analysis of a system of coupled linear or nonlinear equa-
tions. This is generally an involved task, especially in the
presence of deterministic or random nuisance parameters.

PACKET-COUPLING VERSUS PULSE-COUPLING FOR
MUTUAL SYNCHRONIZATION IN WIRELESS NETWORKS
For the time being, we focus the discussion on time synchroniza-
tion for its practicality and wide range of applications in distrib-
uted wireless networks, postponing the discussion on mutual
carrier synchronization and its technological challenges to a
later section. To illustrate the problem, we consider Figure 2 and
define ti(n) as the time of the nth tick (n = 0, 1, 2, . . . ) of the
ith clock (i = 1, 2, . . . , N, where N is the total number of
nodes). In Figure 2, the clock at each node is represented by a
periodic train of pulses corresponding to time instants ti(n). In
case nodes are uncoupled, i.e., no local timing information is
exchanged, the clocks remain asynchronous with generally dif-
ferent local periods ti(n) − ti(n − 1) = Ti , and phases ti(n)

[Figure 2(a)]. On the contrary, if we allow each node, such as the
ith, to gather information about the relative time offsets
tj(n) − ti(n) with respect to a subset of the other nodes ( j "= i),
a synchronized state might be eventually achieved [Figure 2(b)
and (c)]. Notice that the way this time offset information
tj(n) − ti(n) is exchanged and processed distinguishes different

synchronization techniques. We say that a condition of frequency
synchronization to a common frequency 1/ T is achieved if the
local periods ti(n) − ti(n − 1) = T are the same for all clocks
[Figure 2(b)], whereas full synchronization is attained if clocks
tick at the same times, i.e., ti(n) = tj(n), i "= j [Figure 2(c)]. In
the section “Clocks and Synchronization,” we further specify and
elaborate on these concepts.

Different approaches to mutual time synchronization are
classified according to the mechanism adopted for computing
and processing local time differences tj(n) − ti(n) within the
network. In particular, two main families of techniques have
been considered. Traditional methods based on packet coupling
prescribe the periodic exchange of packets carrying time stamps
that contain the local time tj(n) at the sender, through either
point-to-point or broadcast connections [16]. The main sources
of errors for packet-based techniques are the random delays asso-
ciated with the construction of a packet, queuing at the MAC
layer, propagation, and processing of the packet at the receiver
side. In fact, these delays imply that node i actually receives the
timing packet from a node j at time tj(n) + qij, where qij is the
random delay between the two nodes, thus making the time
information on tj(n) contained in the packet outdated. Different
techniques have been designed to mitigate the effects of these
random factors according to diverse principles, such as synchro-
nization between receivers of the same packet rather than

between transmitter and receiver. The
state of the art in packet-based tech-
niques reports synchronization accura-
cies of the order of milliseconds to
microseconds [16]. Moreover, the need
for exchanging of a large number of
packets is common to all packet-based
methods. This in turn entails large com-
putational complexity, energy expendi-
ture, and poor scalability. 

To obviate to the drawbacks of pack-
et-based solutions, more recently, there
has been interest in physical layer-based
schemes, where the local timing infor-
mation in encoded directly in the trans-
mission times of given waveforms g(t).
In particular, each node radiates a peri-
odic train of waveforms 

∑
n g(t − ti(n)),

according to its local clock, on either a
dedicated bandwidth or on an overlay
system such as ultra-wideband (UWB);
see Figure 3. The update of each local
clock is then carried out by processing
the received signal, which is a combina-
tion of waveforms transmitted by neigh-
boring nodes (see Figure 4). Possible
processing techniques include time-of-
arrival estimators but efficient synchro-
nization techniques can be devised that
do not need to explicitly perform such

[FIG3] A graphic illustration of the signal transmitted by N = 3 nodes for pulse-coupled
clocks: each node sends a train of waveforms g(t) (on a dedicated bandwidth or on an
overlay system) for every tick of the local clock.
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Packet Coupling vs. Pulse Coupling III
Update of local clocks by processing received signal
Better scalability since signalling is independent of N
Half-duplex constraint requires special attention (cannot receive
while sending)

possibly large set of coupled oscillators, which calls for the sta-
bility analysis of a system of coupled linear or nonlinear equa-
tions. This is generally an involved task, especially in the
presence of deterministic or random nuisance parameters.

PACKET-COUPLING VERSUS PULSE-COUPLING FOR
MUTUAL SYNCHRONIZATION IN WIRELESS NETWORKS
For the time being, we focus the discussion on time synchroniza-
tion for its practicality and wide range of applications in distrib-
uted wireless networks, postponing the discussion on mutual
carrier synchronization and its technological challenges to a
later section. To illustrate the problem, we consider Figure 2 and
define ti(n) as the time of the nth tick (n = 0, 1, 2, . . . ) of the
ith clock (i = 1, 2, . . . , N, where N is the total number of
nodes). In Figure 2, the clock at each node is represented by a
periodic train of pulses corresponding to time instants ti(n). In
case nodes are uncoupled, i.e., no local timing information is
exchanged, the clocks remain asynchronous with generally dif-
ferent local periods ti(n) − ti(n − 1) = Ti , and phases ti(n)

[Figure 2(a)]. On the contrary, if we allow each node, such as the
ith, to gather information about the relative time offsets
tj(n) − ti(n) with respect to a subset of the other nodes ( j "= i),
a synchronized state might be eventually achieved [Figure 2(b)
and (c)]. Notice that the way this time offset information
tj(n) − ti(n) is exchanged and processed distinguishes different

synchronization techniques. We say that a condition of frequency
synchronization to a common frequency 1/ T is achieved if the
local periods ti(n) − ti(n − 1) = T are the same for all clocks
[Figure 2(b)], whereas full synchronization is attained if clocks
tick at the same times, i.e., ti(n) = tj(n), i "= j [Figure 2(c)]. In
the section “Clocks and Synchronization,” we further specify and
elaborate on these concepts.

Different approaches to mutual time synchronization are
classified according to the mechanism adopted for computing
and processing local time differences tj(n) − ti(n) within the
network. In particular, two main families of techniques have
been considered. Traditional methods based on packet coupling
prescribe the periodic exchange of packets carrying time stamps
that contain the local time tj(n) at the sender, through either
point-to-point or broadcast connections [16]. The main sources
of errors for packet-based techniques are the random delays asso-
ciated with the construction of a packet, queuing at the MAC
layer, propagation, and processing of the packet at the receiver
side. In fact, these delays imply that node i actually receives the
timing packet from a node j at time tj(n) + qij, where qij is the
random delay between the two nodes, thus making the time
information on tj(n) contained in the packet outdated. Different
techniques have been designed to mitigate the effects of these
random factors according to diverse principles, such as synchro-
nization between receivers of the same packet rather than

between transmitter and receiver. The
state of the art in packet-based tech-
niques reports synchronization accura-
cies of the order of milliseconds to
microseconds [16]. Moreover, the need
for exchanging of a large number of
packets is common to all packet-based
methods. This in turn entails large com-
putational complexity, energy expendi-
ture, and poor scalability. 

To obviate to the drawbacks of pack-
et-based solutions, more recently, there
has been interest in physical layer-based
schemes, where the local timing infor-
mation in encoded directly in the trans-
mission times of given waveforms g(t).
In particular, each node radiates a peri-
odic train of waveforms 

∑
n g(t − ti(n)),

according to its local clock, on either a
dedicated bandwidth or on an overlay
system such as ultra-wideband (UWB);
see Figure 3. The update of each local
clock is then carried out by processing
the received signal, which is a combina-
tion of waveforms transmitted by neigh-
boring nodes (see Figure 4). Possible
processing techniques include time-of-
arrival estimators but efficient synchro-
nization techniques can be devised that
do not need to explicitly perform such

[FIG3] A graphic illustration of the signal transmitted by N = 3 nodes for pulse-coupled
clocks: each node sends a train of waveforms g(t) (on a dedicated bandwidth or on an
overlay system) for every tick of the local clock.
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[FIG4] A sketch of the signal received by the fifth node out of a set of N = 5 pulse-coupled
nodes in the nth period of its local clock.

t

2
T5t5(n)+

g(t−t4(n)−q54)

t4(n)+q54 t1(n)+q51
t2(n)+q52

t3(n)+q53

y5(n,t )

t5(n)

2
T5t5(n)−

IEEE SIGNAL PROCESSING MAGAZINE [84] SEPTEMBER 2008

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on February 26, 2009 at 10:41 from IEEE Xplore.  Restrictions apply.

Figure source: [1, Fig. 4]

Thomas Zemen, Nicolai Czink May 12, 2011 13 / 31

Uncoupled Clocks I

Analog clock oscillator

si(t) = cosφi(t)

where φi(t) is the total instantaneous phase evolving as

φi(t) = φi(0) +
2π
Ti

+ ζi(t)

Ti = Tnom +∆Ti . . . free running oscillator period
Tnom . . . nominal period
∆Ti . . . random offset (frequency offset, skew)
ζi(t) . . . phase noise (modeled as random process)

Thomas Zemen, Nicolai Czink May 12, 2011 14 / 31

Uncoupled Clocks II

Discrete-time clock

ti(n) = ti(0) + nTi + ν(n)

modeled as sequence ti(n) of significant time instants of an analog
clock (e.g. upward zero crossing points, φi(ti(n)) = n · 2π) with
n ∈ {0, 1, 2, . . .}.

ν(n) additive phase noise term

Thomas Zemen, Nicolai Czink May 12, 2011 15 / 31

Coupled Clocks
Analog clocks

Frequency synchronisity: for t sufficient large, there exists a common

period of oscillation T for all nodes

φi(t) = φi(t + T ), i = 1, 2, . . . ,N .

Full (frequency and phase) synchronicity: for t sufficiently large

φi(t) = φj(t) ∀ i �= j

Digital clocks
Frequency synchronisity: for n sufficiently large

ti(n + 1)− ti(n) = T , i = 1, . . . ,N .

Full (frequency and phase) synchronicity: for n sufficiently large

ti(n) = tj(n) ∀ i �= j .
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Diffusion Protocols

Basic mechanism
each node transmits (diffuses) its local time (either phase φj(t) or
clock tick tj(n)) to its neighboring nodes
discrete timing tj(n) information encoded either as

time stamp in a packet (packet coupling)

transmission time of a given waveform (pulse coupling) g(t − tj(n))

Thomas Zemen, Nicolai Czink May 12, 2011 17 / 31

Connectivity Graph I

Topology of connections between clocks ic crucial for achieving a
synchronized state.
Connectivity graph G for N = 5

where υ(t) is the additive noise term that accounts for phase
noise. As explained in the previous section, Figure 2(a) shows
the behavior of N uncoupled clocks {ti(n)}N

i=1, assuming for
simplicity no phase noise. It is apparent that the nodes, if iso-
lated, remain asynchronous.

COUPLED CLOCKS
The goal of a coupling mechanism among the clocks is to drive
the latter to synchronicity, possibly within a given tolerance.
Before further elaborating on the basic ideas behind (either pack-
et or pulse) clock coupling for analog and discrete time clocks,
we formalize the notions of synchronized states, intuitively intro-
duced through the discussion on Figure 2 in the previous sec-
tion. For analog clocks, we have two conditions of interest: 

!  Frequency synchronicity: for t sufficiently large, there exists
a common period of oscillation T for all the nodes so that 

"i(t) = "i(t + T ), i = 1, 2, . . . , N. (4)

! Full (frequency and phase) synchronicity: for t sufficiently
large, we have 

"i (t) = " j (t) for each i != j. (5)

Notice that for analog clocks, full synchronicity implies the
existence of a common time scale at all times. On the other hand,
for discrete time clocks, nodes are said to be synchronous if they
agree on the time instants ti(n) corresponding to the ticks of the
local clocks, which entails that a common notion of time does not
exist for the period elapsed between two ticks. More specifically,
for discrete time clocks, we have the following two conditions: 

! Frequency synchronicity [Figure 2(b)]: for n sufficiently
large, there exists a common period of oscillation T for all the
nodes so that 

ti(n + 1) − ti(n) = T, i = 1, . . . , N . (6)

! Full (frequency and phase) synchronicity [Figure 2(b)]:
for n sufficiently large, we have 

ti(n) = tj(n) for each i != j. (7)

In this article, we focus on diffusion protocols for the
exchange of local time information. This class encompasses,
among the others, the packet-coupling method of [27], pulse
coupling (see [18], [25], and [26]), and the synchronization of
analog clocks according to the standard Kuramoto model
[5]–[7] or the analog PLLs in [9]. Moreover, as illustrated in the
section “Distributed Consensus for Multiagent Coordination,”
diffusion synchronization protocols have strong connections
with signal processing applications such as distributed estima-
tion [21], [29], detection [30], and consensus [31] problems. The
basic mechanism is as follows. Each node transmits (diffuses) its
local time [either phase " j (t) or clock tick tj (n)] to its neigh-
boring nodes, where the definition of neighbors usually identi-
fies those nodes that receive a sufficiently large power from the
sender. We recall that the timing information tj(n) can be
encoded either as a time stamp in a packet (packet coupling)
[27] or simply in the transmission time of a given waveform
g(t − tj (n)) (pulse coupling) in the case of discrete time clocks.
For analog clocks, a signal proportional to the local oscillator
sj (t) needs to be radiated by each node, as discussed in the sec-
tion “Continuously Coupled Analog Clocks.” The goal of each
recipient, such as the ith, is to measure the phase or time differ-
ences between the local clock and the clocks of neighboring
senders [" j(t) − "i (t) or tj(n) − ti(n), respectively], and to
correct the local clock accordingly, despite the nuisance term
due to propagation delays.

CONNECTIVITY GRAPH AND LAPLACIAN MATRIX
From the presentation above, it is clear that the achievement of
a synchronized state strictly depends on the topology of the con-
nections between clocks, since each node transmits its local
time information only to neighbors. The standard way to repre-
sent this relationship between nodes is by means of a connectiv-
ity graph G , as the one sketched in Figure 5 for N = 5. In
particular, node i receives the synchronization signal from j
(i.e., j is a neighbor of i ) if there exists an edge directed from i
to j. Moreover, this edge is weighted by a positive value αi j, that
represents the relative strength of the signal received by i from j
with respect to the other neighbors of i (we have the normaliza-
tion condition 

∑
j αi j = 1). For instance, a typical choice for

parameters αi j is the following [10], [23]: 

αi j =
Pij∑

j∈Ii
Pij

, (8)

where Pij is the power received by the ith node from the jth and
Ii is the set of neighbors of i (Ii = { j : Pij > P0},with P0 being a
power threshold). Therefore, the edge weight αi j depends on the
distance between nodes i and j through path loss attenuation,

[FIG5] Example of a connectivity graph G: local time information
is exchanged along the edges of the graph weighted by the
coupling strengths αij. A key role in the analysis of distributed
synchronizaton is played by the Laplacian matrix L = I − A,
where A is the adjacency matrix of the connectivity graph G
([A]ij = αij for i != j and [A]ii = 0).
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Connectivity Graph II

Edge weight αij represents relative signal strength received by i from
j with respect to the other neighbors of i ,

�

j
αij = 1 .

Typical choice
αij =

Pij�
j∈Ii

Pij

where

Pij . . . power received by node i from node j
Ii . . . set of neighbors of i , Ii = {j : Pij > P0}
P0 . . . power threshold
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Connectivity Graph III

Diffusion synchronization protocols described by linear dynamic
systems
System matrix L is linearly related to connectivity graph G

Laplacian matrix L is key algebraic quantity describing G,

L = I − A

where A is the adjacency matrix of the graph

[A]ij = αij for i �= j

[A]ii = 0
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Connectivity Graph IV

Performance of mutual synchronization depends on the network
topoplogy through the eigenstructure of the Laplacian matrix L
The directed and weighted graph G = (V, E ,A) with N vertices V
and edges E ⊆ V × V

Laplacian matrix L = I − A has the following properties:

existence of a zero eigenvalue, λ1(L) = 0

all the eigenvalues λk(L) satisfy |λk(L)− 1| ≤ 1

if weights are symmetric, αij = αji , matrix L is symmetric and

positive semidefinite so that λk(L) are real and satisfy 0 ≤ λk(L) ≤ 2.

Thomas Zemen, Nicolai Czink May 12, 2011 21 / 31

Connectivity Graph V

Conditions for mutual synchronization

Continuously coupled first order PLL: � {λk(L)} > 0 for k �= 1.

Pulse-coupled: |λk(L)| > 0 for k �= 1

Exponential rate of convergence of synchronization depends on the

“smallest” eigenvalue (see two cases above)

If graph is strongly connected, i.e. there exists a path between any

pair of nodes, multiplicity of λ1(L) = 0 is one.
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Continuously Coupled Analog Clocks I
Applications

Cooperative Beamforming

FDMA in ad-hoc networks

Historically the first model studied
Each node transmits a signal proportional to its local oscillator si(t)
and updates the instantaneous phase φi(t) based on the received
signal from the other nodes (full duplex is assumed).
Basic mechanism → phase locking
Each node measures through its phase detector (PD) the convex
combination of phase differences

∆φi(t) =
N�

j=1,j �=i
αij f (φj(t)− φi(t)) (1)

where f (·) is a nonlinear function of the PD.
Thomas Zemen, Nicolai Czink May 12, 2011 23 / 31

Continuously Coupled Analog Clocks II

Convex combination in (1) ensures that ∆φi(t) takes values between
the minimum and maximum of phase differences f (φj(t)− φi(t)).
∆φi(t) is fed to a loop filter �(s) whose output drives a voltage
controlled oscillator (VCO)

and on possibly random factors such as fading and shadowing.
Notice that the graph is typically directed (αi j != α ji) and further-
more, it is bidirectional (i.e., αi j > 0 if and only if α ji > 0) unless
different nodes have different power constraints (so that, given a
pair of nodes, one node may be within the transmission radius of
the other but not vice versa).

As illustrated in the rest of the article, diffusion synchroniza-
tion protocols for both analog and discrete cases can be described
by linear dynamic systems (see (11) and (17) for a preview)
whose system matrix is linearly related to a key algebraic quanti-
ty that describes the connectivity graph G, namely the Laplacian
matrix L [32]. This is defined as L = I − A, where A is the adja-
cency matrix of the graph ([A]i j = αi j for i != j and [A]ii = 0). It
is then clear that the performance of mutual synchronization
depends on the network topology (connectivity graph G) through
the eigenstructure of the Laplacian matrix L. As elaborated in the
following (and with some details in “Algebraic Graph Theory and
Distributed Synchronization”), of particular relevance is the null
space of matrix L, that is sometimes referred to as the synchro-
nization subspace. Specifically, the multiplicity of the zero-eigen-
value λ(L) = 0 determines whether a synchronized state is
eventually achieved or not, while the left eigenvector
v = [v1 · · · vN]T corresponding to λ(L) = 0 (vT L = 0) yields the
steady-state frequency and phases of the clocks (see (12), (14),
and (19) for a preview).

As a final remark, in the discussion above, we have limited
the scope to time-invarying and deterministic topologies, but
the analysis can be extended to both time-varying [31], [33]
and random [34] topologies. We will provide some comments
on these important cases in the following, and we point to ref-
erences for further details. 

REMARK 3
The (average) accuracy of different
clocks is sometimes measured in parts-
per-million (PPM) by calculating the
average (absolute value of) the clock
error after one second. There exists a
clear trade-off between accuracy and
power consumption. For instance, accu-
racies of typical clocks range between
around 10−4 and 10−11 PPM with cor-
responding power consumptions on the
order of 1µW and hundreds of
megawatts, respectively [12].

CONTINUOUSLY
COUPLED ANALOG CLOCKS
In this section, we study the problem of
distributed synchronization of coupled
analog clocks. The interest of such prob-
lem for wireless communications is relat-
ed to applications such as, e.g.,
cooperative beamforming or frequency
division multiple access in ad hoc net-

works. Moreover, it is historically the first studied model of dis-
tributed synchronization, and sets the ground for the discussion
on discrete-time clocks in the next section.

With coupled analog clocks, each node transmits a signal
proportional to its local oscillator si (t) in (1) and updates the
instantaneous phase #i(t) based on the signal received from
other nodes. Notice that this procedure assumes that each node
is able to transmit and receive continuously and at the same
time (full duplex, see Remark 2). The basic mechanism of con-
tinuously coupled clocks is phase locking (see Figure 6). Each
node, say the ith, measures through its phase detector (PD) the
convex combination of phase differences

$#i (t) =
N∑

j=1, j !=i
αi j · f(#j(t) − #i (t)), (9)

where # j(t) − #i(t) is the phase difference with respect to
node j, and f(·) and αi j are phase detector-specific features,
namely a nonlinear function and convex combination weights
(i.e., 

∑ N
j=1 αi j = 1 and αi j ≥ 0),respectively (recall the discus-

sion in the previous section). Notice that the choice of a convex
combination in (9) ensures that the output of the phase detector
$#i (t) takes values in the range between the minimum and the
maximum of phase differences f (#j(t) − #i (t)). Finally, the
difference $#i(t) (9) is fed to a loop filter ε(s), whose output
drives the voltage controlled oscillator (VCO), which updates the
local phase as

#̇i(t) = 2π

Ti
+ ε0

N∑

j=1, j !=i
αi j · f(#j (t) − #i(t)), (10)

[FIG6] Block diagram of N = 3 continuously coupled oscillators (PD: phase detector; VCO:
voltage controlled oscillator).
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Continuously Coupled Analog Clocks III

VCO update the local phase as

φ̇i(t) =
2π
Ti

+ �0

N�

j=1,j �=i
αij f (φj(t)− φi(t))

where a simple loop filter �(s) = �0 was assumed.

Note that we assumed the following simplifications:

no phase noise

instantaneous coupling among clocks (nor propagation delay)

time invariant network topology
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Kuramoto’s Model

First model of coupled analog oscillators was proposed by Kuramoto
all-to-all connectivity (not directely applicable to wireless networks)

sinusoidal phase detector f (x) = sin(x)
simple loop filter �(s) = �0 (first order PLL)

Critical value �0 > �∗0 for loop gain → state of partial frequency
synchronization

part of the oscillators is in phase

and part is out of synchrony

full synchronization is eventually achieved for �0 → ∞.

For �0 < �∗0 the clocks remain in an incoherent state

Thomas Zemen, Nicolai Czink May 12, 2011 26 / 31

Continously Coupled Linear PLL
Linear phase detectors f (x) = x
Arbitrary connections αij
Loop filter

first order PLL �(s) = �0

second order PLL �(s) = �0
1− s

µ

Vector linear time-invariant differential equation

φ̇(t) = ω − �0Lφ(t)

where φ(t) = [φ1(t), . . . ,φN(t)]T and ω = [2π/T1, . . . , 2π/TN ]
T.

Steady state frequency synchronization

1
T =

N�

i=1
vi

1
Ti

where v = [v1, . . . , vN ]
T is the normalized eigenvalue of L

corresponding to the zero eigenvalue LTv = 0.
Generally phase synchronization is not attained!
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Pulse-Coupled Discrete Time Clocks I

Two approaches
integrate-and-fire oscillators

distributed discrete time PLLs

Integrate-and-fire
for analysis no frequency mismatch is assumed first Ti = Tnom

Notice that the second term in the right hand side of (13) is a
phase common to all clocks and the third represents the phase
mismatch (see “Algebraic Graph Theory and Distributed
Synchronization” for details). As a special case of these results, if
no deviation among local frequency exists (Ti = Tnom), then
from (12) the common frequency is 1/T = 1/Tnom, and, from
(13), full frequency and phase synchronization is achieved with
(recall that !!!ωωω = 0)

#i (t) → 2π

T
t +

N∑

j=1
vj # j (0). (14)

The results summarized above are extended in [9] to more
complex scenarios with loop filters ε(s) = ε0/(1 − s/µ), delays
and phase noise. In particular, similarly to conventional PLLs, it
is shown that adding a pole µ in the loop filter ε(s) (second-
order PLLs) reduces the steady-state phase error [see (13)] but,
at the same time, reduces the stability margin. These results can
be seen as the natural extension of known conclusions in the
context of classical (master-slave point-to-point) PLLs [35].
Moreover, propagation delays are shown to cause steady-state
phase mismatch. Further discussion on the latter topic is pro-
vided in the section “The Impact of Propagation and Processing
Delays and Phase Noise” for the case of discrete time PLLs.

PULSE-COUPLED DISCRETE TIME CLOCKS
In this section, we review the two approaches proposed for pulse-
coupled discrete time clocks (Figure 3): integrate-and-fire oscil-
lators [8], [25], and distributed discrete time PLLs [10], [23], [24]
(see also [27]). As in the previous section, in order to simplify the
presentation, we focus on a scenario with absence of phase noise
and delays (qij = 0). Moreover, we limit the scope to infinite-res-
olution time detectors: that is, we assume that each
node is able to detect the time of arrival tj (n) of any
pulse received from its neighboring nodes. Clearly, in
practice, there exists a trade-off between resolution on
one hand, and bandwidth and complexity on the other.
More general models with phase noise, delays, and
finite-resolution time detectors will be discussed in the
section “Signal Processing Aspects of Distributed Time
Synchronization.” 

PULSE-COUPLED
INTEGRATE-AND-FIRE OSCILLATORS
This model was first studied in the context of math-
ematical biology in [8] and then applied by [25] to
wireless networks. In order to enable the analysis, it
is assumed that no frequency mismatch among dif-
ferent nodes is present (Ti = Tnom). The impact of a
frequency mismatch has been investigated via
numerical simulations in [25]. Moreover, according
to the model, each node is equipped with an inte-
grate-and-fire oscillator, as sketched in Figure 7(a).
Adapting the notation of [8] to fit our overview, this
oscillator is described, when isolated, by a state vari-

able xi (t) = g(#i (t)), where g(·) is a periodic function (with
period 2π) such that in each period it is smooth, monotoni-
cally increasing from zero to one, and concave. As before, the
ticks ti (n) of the clock correspond to the time instants when
the phase returns, after one period, to 2π, or equivalently
when the state variables charges up to its maximum value
xi (ti (n)) = 1 and then returns to zero.

The model of integrate-and-fire oscillators prescribes the
following coupling mechanism among clocks, illustrated in
Figure 7(b). Upon detection of the pulse sent by any node j at
time tj(n) (propagation delays are neglected in this model),
the i th clock modifies the state function by adding a value ε
towards the goal of selecting a firing instant that is closer to
that of clock j

xi(tj (n)+) =
{

xi(tj (n)−) + ε if xi (tj (n)−) + ε < 1
0 otherwise

and adjusts the phase #i (t) accordingly.
Convergence of pulse-coupled integrate-and-fire clocks

can be evaluated for arbitrary connections αi j by casting the
problem as the study of asymptotic stability of a system of dif-
ferential equations [26]. Using Lyapunov stability theory, con-
vergence is shown to depend on the properties of the graph
Laplacian L (see the section “Coupled Clocks” and “Algebraic
Graph Theory and Distributed Synchronization,”) similarly to
the case of analog oscillators.

The main drawbacks of the model of integrate-and-fire
oscillators when applied to wireless networks are: i) it is hard
to extend the analysis to realistic and complex scenarios with
inaccurate clocks, propagation delays, or time-varying
channels; ii) the system design is not flexible enough to grant

[FIG7] Pulse-coupled integrate-and-fire clocks: (a) State function xi(t )
for isolated clocks; (b) State function xi(t ) behavior in presence of a
received pulse.
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Pulse-Coupled Discrete Time Clocks II

Oscillator described by state variable xi(t) = g(φi(t)) where g(·) is
a periodic function with period 2π, smooth, concave and
monotonically increasing from zero to one.
Clock ticks ti(n) correspond to time instants when variable reaches
xi(ti(n)) = 1 and returns to zero.
Upon detection of the pulse sent by any node j at time tj(n) the ith
clock adds � to its state variable moving its firing instant closer to
that of clock j ,

xi(tj(n)+) =





xi(tj(n)−) + � if xi(tj(n)−) + � < 1
0 otherwise
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Pulse-Coupled Discrete Time Clocks III

Notice that the second term in the right hand side of (13) is a
phase common to all clocks and the third represents the phase
mismatch (see “Algebraic Graph Theory and Distributed
Synchronization” for details). As a special case of these results, if
no deviation among local frequency exists (Ti = Tnom), then
from (12) the common frequency is 1/T = 1/Tnom, and, from
(13), full frequency and phase synchronization is achieved with
(recall that !!!ωωω = 0)

#i (t) → 2π

T
t +

N∑

j=1
vj # j (0). (14)

The results summarized above are extended in [9] to more
complex scenarios with loop filters ε(s) = ε0/(1 − s/µ), delays
and phase noise. In particular, similarly to conventional PLLs, it
is shown that adding a pole µ in the loop filter ε(s) (second-
order PLLs) reduces the steady-state phase error [see (13)] but,
at the same time, reduces the stability margin. These results can
be seen as the natural extension of known conclusions in the
context of classical (master-slave point-to-point) PLLs [35].
Moreover, propagation delays are shown to cause steady-state
phase mismatch. Further discussion on the latter topic is pro-
vided in the section “The Impact of Propagation and Processing
Delays and Phase Noise” for the case of discrete time PLLs.

PULSE-COUPLED DISCRETE TIME CLOCKS
In this section, we review the two approaches proposed for pulse-
coupled discrete time clocks (Figure 3): integrate-and-fire oscil-
lators [8], [25], and distributed discrete time PLLs [10], [23], [24]
(see also [27]). As in the previous section, in order to simplify the
presentation, we focus on a scenario with absence of phase noise
and delays (qij = 0). Moreover, we limit the scope to infinite-res-
olution time detectors: that is, we assume that each
node is able to detect the time of arrival tj (n) of any
pulse received from its neighboring nodes. Clearly, in
practice, there exists a trade-off between resolution on
one hand, and bandwidth and complexity on the other.
More general models with phase noise, delays, and
finite-resolution time detectors will be discussed in the
section “Signal Processing Aspects of Distributed Time
Synchronization.” 

PULSE-COUPLED
INTEGRATE-AND-FIRE OSCILLATORS
This model was first studied in the context of math-
ematical biology in [8] and then applied by [25] to
wireless networks. In order to enable the analysis, it
is assumed that no frequency mismatch among dif-
ferent nodes is present (Ti = Tnom). The impact of a
frequency mismatch has been investigated via
numerical simulations in [25]. Moreover, according
to the model, each node is equipped with an inte-
grate-and-fire oscillator, as sketched in Figure 7(a).
Adapting the notation of [8] to fit our overview, this
oscillator is described, when isolated, by a state vari-

able xi (t) = g(#i (t)), where g(·) is a periodic function (with
period 2π) such that in each period it is smooth, monotoni-
cally increasing from zero to one, and concave. As before, the
ticks ti (n) of the clock correspond to the time instants when
the phase returns, after one period, to 2π, or equivalently
when the state variables charges up to its maximum value
xi (ti (n)) = 1 and then returns to zero.

The model of integrate-and-fire oscillators prescribes the
following coupling mechanism among clocks, illustrated in
Figure 7(b). Upon detection of the pulse sent by any node j at
time tj(n) (propagation delays are neglected in this model),
the i th clock modifies the state function by adding a value ε
towards the goal of selecting a firing instant that is closer to
that of clock j

xi(tj (n)+) =
{

xi(tj (n)−) + ε if xi (tj (n)−) + ε < 1
0 otherwise

and adjusts the phase #i (t) accordingly.
Convergence of pulse-coupled integrate-and-fire clocks

can be evaluated for arbitrary connections αi j by casting the
problem as the study of asymptotic stability of a system of dif-
ferential equations [26]. Using Lyapunov stability theory, con-
vergence is shown to depend on the properties of the graph
Laplacian L (see the section “Coupled Clocks” and “Algebraic
Graph Theory and Distributed Synchronization,”) similarly to
the case of analog oscillators.

The main drawbacks of the model of integrate-and-fire
oscillators when applied to wireless networks are: i) it is hard
to extend the analysis to realistic and complex scenarios with
inaccurate clocks, propagation delays, or time-varying
channels; ii) the system design is not flexible enough to grant

[FIG7] Pulse-coupled integrate-and-fire clocks: (a) State function xi(t )
for isolated clocks; (b) State function xi(t ) behavior in presence of a
received pulse.
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Figure source: [1, Fig. 7 (b)]

Lyapunov stability theory shows that Laplacian L determins stability
similarly to the case of analog oscillators.
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