Outline I

Cooperative Communications

Lecture 8

Thomas Zemen, Nicolai Czink

May 12, 2011

Today, Lecture 8

- Distributed Synchronization
 - Brief history
 - Wireless networks
 - Packet-coupling vs. pulse-coupling

Thomas Zemen, Nicolai Czink

May 12, 2011 1/31

ttw

May 12, 2011 3/31

Introduction

- Local clocks at different nodes separated by (large) distances
- Synchronization: achieving and maintaining coordination among these local clock via exchange of local time information [1]
- Synchronization schemes classification by method used for
 - encoding,
 - exchange, and
 - processing

of information.

• Wireless communication in decentralized cooperative communication networks and sensor networks heavily rely on synchronization.

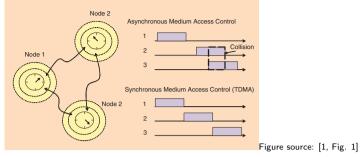
Brief History

Thomas Zemen, Nicolai Czink

- 19th century synchronization of distant clock to a reference time (unidirectional or master-slave synchronization)
 - implemented by telegraphy and later by wireless transmission
 - applications enabled
 - railroad transport
 - geodesy (meas. of longitude)
 - localization
- 20th century spontaneous synchronization in nature as role model
 - Fireflies
 - activity of muscle fibres
 - clapping in a concert hall

ttw

Wireless Networks I



Examples:

- Distributed estimation and data fusion in sensor networks
- Multiple access schemes avoiding collisions
- Cooperative transmission
 - space time coding
 - distributed beamforming

Distributed Synchronization

Mutual synchronization in distributed wireless networks

- Problems:
 - Random delays between transmission and reception of a timing signal
 - wave propagation
 - processing latency
 - Hardware and clock inaccuracies
- Specific aspects of wireless networks
 - Energy efficiency
 - Scalabillity
 - Application specifity

Wireless Networks II

Classic synchronization methods:

- Central access point broadcast beacon timing signal (GSM, UMTS, IEEE 802.15.4 ZigBee)
- Satellite-synchronization (oudoor)

Thomas Zemen, Nicolai Czink

May 12, 2011 6/31

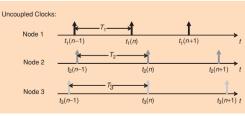
Basics I

Definitions

- t_i(n)... nth tick (n = 0, 1, 2, ...) of the *i*th clock (i = 1, 2, ..., N) where N is the number of nodes
- Local periods $T_i = t_i(n) t_i(n-1)$

Uncoupled nodes

Thomas Zemen, Nicolai Czink



No local timing information is exchanged, local periods T_i and phases $t_i(n)$ differ.

ftw

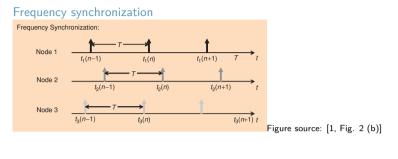
ftw.

May 12, 2011 5/31

ftw.

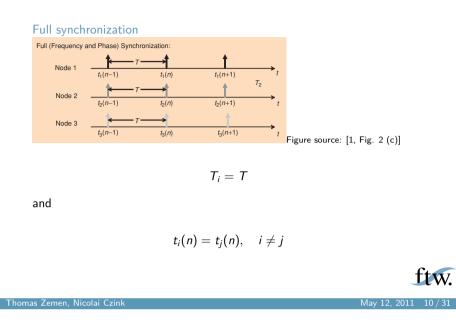
Figure source: [1, Fig. 2 (a)]

Basics II



 $T_i = T$

Basics III



Packet Coupling vs. Pulse Coupling I

Packet Coupling

Thomas Zemen, Nicolai Czink

- Periodic exchange of packets carrying time stamps containing the local time t_i(n) at the sender (point-to-point or broadcast)
- Source of errors through random delays q_{ii}
 - packet construction
 - ${\scriptstyle \bullet }$ queuing at the MAC
 - propagation
 - processing at receiver side
- Node *i* receives timing packet from node *j* at time $t_i(n) + q_{ij}$
- Accuracy in the order of milliseconds to microseconds can be achieved
- Large number of packets must be exchanged limited scalability

ftw.

May 12, 2011 11/31

ftw.

May 12, 2011 9/31

Pulse CouplingLocal time information is encoded in the transmission times of given

Packet Coupling vs. Pulse Coupling II

- waveforms g(t)
- Each nodes radiates a periodic train of waveforms

$$\sum_n g(t-t_i(n))$$

according to its local clock.

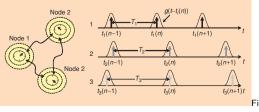


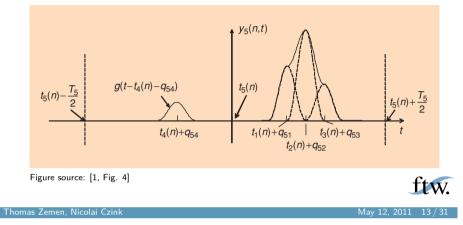
Figure source: [1, Fig. 3]

May 12, 2011 12 / 31

ftw.

Packet Coupling vs. Pulse Coupling III

- Update of local clocks by processing received signal
- Better scalability since signalling is independent of N
- Half-duplex constraint requires special attention (cannot receive while sending)



Uncoupled Clocks II

Discrete-time clock

$$t_i(n) = t_i(0) + nT_i + \nu(n)$$

modeled as sequence $t_i(n)$ of significant time instants of an analog clock (e.g. upward zero crossing points, $\phi_i(t_i(n)) = n \cdot 2\pi$) with $n \in \{0, 1, 2, ...\}$.

 $\nu(n)$ additive phase noise term

Uncoupled Clocks I

• Analog clock oscillator

 $s_i(t) = \cos \phi_i(t)$

where $\phi_i(t)$ is the total instantaneous phase evolving as

 $\phi_i(t) = \phi_i(0) + \frac{2\pi}{T_i} + \zeta_i(t)$

 $T_{i} = T_{nom} + \Delta T_{i} \quad \dots \text{ free running oscillator period}$ $T_{nom} \dots \text{ nominal period}$ $\Delta T_{i} \dots \text{ random offset (frequency offset, skew)}$ $\zeta_{i}(t) \dots \text{ phase noise (modeled as random process)}$

ftw.

Thomas Zemen, Nicolai Czink

May 12, 2011 14 / 31

Coupled Clocks

Analog clocks

• Frequency synchronisity: for *t* sufficient large, there exists a common period of oscillation *T* for all nodes

$$\phi_i(t) = \phi_i(t+T), i = 1, 2, \ldots, N.$$

• Full (frequency and phase) synchronicity: for t sufficiently large

$$\phi_i(t) = \phi_j(t) \quad \forall \quad i \neq j$$

- Digital clocks
 - Frequency synchronisity: for n sufficiently large

$$t_i(n+1) - t_i(n) = T, i = 1, ..., N.$$

• Full (frequency and phase) synchronicity: for *n* sufficiently large

$$t_i(n) = t_j(n) \quad \forall \quad i \neq j \,.$$

ftw.

May 12, 2011 15 / 31

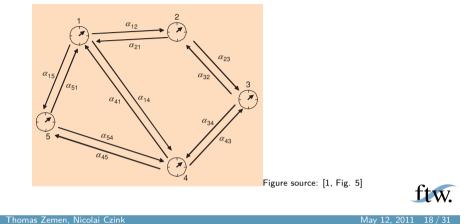
Diffusion Protocols

Basic mechanism

- each node transmits (diffuses) its local time (either phase φ_j(t) or clock tick t_i(n)) to its neighboring nodes
- discrete timing $t_i(n)$ information encoded either as
 - time stamp in a packet (packet coupling)
 - transmission time of a given waveform (pulse coupling) $g(t t_j(n))$

Connectivity Graph I

- Topology of connections between clocks ic crucial for achieving a synchronized state.
- Connectivity graph G for N = 5



ftw.

May 12, 2011 17 / 31

Thomas Zemen, Nicolai Czink

Connectivity Graph II

• Edge weight α_{ij} represents relative signal strength received by *i* from *j* with respect to the other neighbors of *i*,

$$\sum_{j} lpha_{ij} = 1$$
 .

• Typical choice

$$\alpha_{ij} = \frac{P_{ij}}{\sum_{j \in \mathcal{I}_i} P_{ij}}$$

where

 P_{ij} ... power received by node *i* from node *j*

$$\mathcal{I}_i \dots$$
 set of neighbors of i , $\mathcal{I}_i = \{j : P_{ij} > P_0\}$

 $P_0 \ldots$ power threshold

Connectivity Graph III

- Diffusion synchronization protocols described by linear dynamic systems
- \bullet System matrix ${\pmb L}$ is linearly related to connectivity graph ${\mathcal G}$
- Laplacian matrix \boldsymbol{L} is key algebraic quantity describing \mathcal{G} ,

$$\boldsymbol{L} = \boldsymbol{I} - \boldsymbol{A}$$

where \boldsymbol{A} is the adjacency matrix of the graph

$$[\mathbf{A}]_{ij} = \alpha_{ij} \quad \text{for} \quad i \neq j$$

[**A**]_{*ii*} = 0

ftw.

Connectivity Graph IV

- Performance of mutual synchronization depends on the network topoplogy through the eigenstructure of the Laplacian matrix L
- The directed and weighted graph G = (V, E, A) with N vertices V and edges E ⊆ V × V
- Laplacian matrix $\boldsymbol{L} = \boldsymbol{I} \boldsymbol{A}$ has the following properties:
 - existence of a zero eigenvalue, $\lambda_1(\boldsymbol{L}) = 0$
 - all the eigenvalues $\lambda_k({m L})$ satisfy $|\lambda_k({m L})-1|\leq 1$
 - if weights are symmetric, $\alpha_{ij} = \alpha_{ji}$, matrix \boldsymbol{L} is symmetric and positive semidefinite so that $\lambda_k(\boldsymbol{L})$ are real and satisfy $0 \le \lambda_k(\boldsymbol{L}) \le 2$.

ftw.

ttw

May 12, 2011 23 / 31

May 12, 2011 21 / 31

Thomas Zemen, Nicolai Czink

Continuously Coupled Analog Clocks I

- Applications
 - Cooperative Beamforming
 - FDMA in ad-hoc networks
- Historically the first model studied
- Each node transmits a signal proportional to its local oscillator $s_i(t)$ and updates the instantaneous phase $\phi_i(t)$ based on the received signal from the other nodes (full duplex is assumed).
- $\bullet~\mbox{Basic mechanism} \to \mbox{phase locking}$
- Each node measures through its phase detector (PD) the convex combination of phase differences

$$\Delta\phi_i(t) = \sum_{j=1, j \neq i}^N \alpha_{ij} f(\phi_j(t) - \phi_i(t)) \tag{1}$$

where $f(\cdot)$ is a nonlinear function of the PD.

Continuously Coupled Analog Clocks II

Thomas Zemen, Nicolai Czink

Connectivity Graph V

Conditions for mutual synchronization

• Pulse-coupled: $|\lambda_k(\mathbf{L})| > 0$ for $k \neq 1$

"smallest" eigenvalue (see two cases above)

pair of nodes, multiplicity of $\lambda_1(\mathbf{L}) = 0$ is one.

• Convex combination in (1) ensures that $\Delta \phi_i(t)$ takes values between

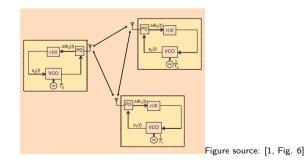
the minimum and maximum of phase differences $f(\phi_i(t) - \phi_i(t))$.

• Continuously coupled first order PLL: $\Re \{\lambda_k(\boldsymbol{L})\} > 0$ for $k \neq 1$.

• Exponential rate of convergence of synchronization depends on the

• If graph is strongly connected, i.e. there exists a path between any

 Δφ_i(t) is fed to a loop filter ε(s) whose output drives a voltage controlled oscillator (VCO)



ftw

May 12, 2011 22 / 31

Continuously Coupled Analog Clocks III

• VCO update the local phase as

$$\dot{\phi}_i(t) = rac{2\pi}{T_i} + \epsilon_0 \sum_{j=1, j \neq i}^N lpha_{ij} f(\phi_j(t) - \phi_i(t))$$

- where a simple loop filter $\epsilon(s) = \epsilon_0$ was assumed.
- Note that we assumed the following simplifications:
 - no phase noise
 - instantaneous coupling among clocks (nor propagation delay)
 - time invariant network topology

Kuramoto's Model

- First model of coupled analog oscillators was proposed by Kuramoto
 - all-to-all connectivity (not directely applicable to wireless networks)
 - sinusoidal phase detector f(x) = sin(x)
 - simple loop filter $\epsilon(s) = \epsilon_0$ (first order PLL)
- Critical value $\epsilon_0>\epsilon_0^*$ for loop gain \rightarrow state of partial frequency synchronization
 - part of the oscillators is in phase
 - and part is out of synchrony
 - full synchronization is eventually achieved for $\epsilon_0 \rightarrow \infty$.
- For $\epsilon_0 < \epsilon_0^*$ the clocks remain in an incoherent state

ftw.

ftw.

May 12, 2011 27 / 31

May 12, 2011 25 / 31

Thomas Zemen, Nicolai Czink

Thomas Zemen, Nicolai Czink

May 12, 2011 26/31

Continously Coupled Linear PLL

- Linear phase detectors f(x) = x
- Arbitrary connections α_{ij}
- Loop filter
 - first order PLL $\epsilon(s) = \epsilon_0$
 - second order PLL $\epsilon(s) = \frac{\epsilon_0}{1-\frac{s}{2}}$
- Vector linear time-invariant differential equation

$$\dot{\phi}(t) = \omega - \epsilon_0 \boldsymbol{L} \phi(t)$$

where
$$\phi(t) = \left[\phi_1(t), \dots, \phi_N(t)\right]^\mathsf{T}$$
 and $\boldsymbol{\omega} = \left[2\pi/T_1, \dots, 2\pi/T_N\right]^\mathsf{T}$.

• Steady state frequency synchronization

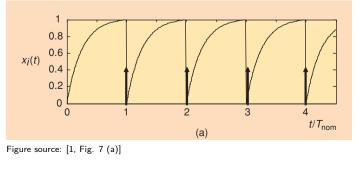
$$\frac{1}{T} = \sum_{i=1}^{N} v_i \frac{1}{T_i}$$

where $\boldsymbol{v} = [v_1, \dots, v_N]^T$ is the normalized eigenvalue of \boldsymbol{L} corresponding to the zero eigenvalue $\boldsymbol{L}^T \boldsymbol{v} = \boldsymbol{0}$.

• Generally phase synchronization is not attained!

Pulse-Coupled Discrete Time Clocks I

- Two approaches
 - integrate-and-fire oscillators
 - distributed discrete time PLLs
- Integrate-and-fire
 - $\bullet\,$ for analysis no frequency mismatch is assumed first $\,{\cal T}_i={\cal T}_{\rm nom}\,$



ftw

Pulse-Coupled Discrete Time Clocks II

- Oscillator described by state variable x_i(t) = g(φ_i(t)) where g(·) is a periodic function with period 2π, smooth, concave and monotonically increasing from zero to one.
- Clock ticks $t_i(n)$ correspond to time instants when variable reaches $x_i(t_i(n)) = 1$ and returns to zero.
- Upon detection of the pulse sent by any node j at time t_j(n) the ith clock adds e to its state variable moving its firing instant closer to that of clock j,

$$egin{aligned} x_i(t_j(n)^+) = egin{cases} x_i(t_j(n)^-) + \epsilon & ext{if } x_i(t_j(n)^-) + \epsilon < 1 \ 0 & ext{otherwise} \end{aligned}$$

ftw.

ftw.

May 12, 2011 31/31

May 12, 2011 29/31

Thomas Zemen, Nicolai Czink

References I

 O. Simeone, U. S. andd Yeheskel Bar-Ness, and S. H. Strogatz, "Distributed synchronization in wireless networks," *IEEE Signal Process. Mag.*, pp. 81–97, September 2008.

Pulse-Coupled Discrete Time Clocks III

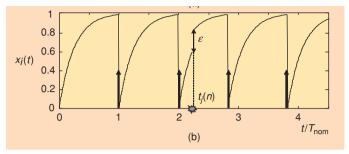


Figure source: [1, Fig. 7 (b)]

• Lyapunov stability theory shows that Laplacian *L* determins stability similarly to the case of analog oscillators.

Thomas Zemen, Nicolai Czink

May 12, 2011 30 / 31

ftw.