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Abstract—In this paper, we present a new approach for the

identification of scattering objects in the delay and Doppler

domain. Until now, the identification was done visually based

on the power delay profile and video material recorded in the

measurement campaigns. We propose to use automatic methods

based on the local scattering function (LSF), which brings the

Doppler domain into play.

The LSF is a multitaper estimate of the two-dimensional (2D)

power spectral density in delay and Doppler. Each peak of

the LSF is composed of several multipath components (MPCs)

coming from the same scattering object.

Our approach consists of two steps: (i) detection of the relevant

peaks, and (ii) assignment of MPCs to the scattering objects using

a clustering algorithm. We use a modified a modified version of

the density-based clustering of applications with noise algorithm,

where we use the MPC distance. We apply the method to a set

of vehicular radio channel measurements and extract the time-

varying cluster parameters.

The clusters have ellipsoidal shape with their longer axis in

the Doppler domain. The first detected cluster presents different

properties than the rest of the clusters, being larger, constant in

time, and more static in the delay-Doppler plane. By properly

identifying only the relevant scattering objects, vehicular channel

models, such as the geometry-based stochastic channel model, can

be simplified significantly.

I. INTRODUCTION

In order to design reliable vehicle-to-vehicle (V2V) commu-
nication systems, an understanding of realistic V2V propaga-
tion channels is required. The vehicular antennas are normally
mounted on the roof top of the car, at around 1.5 m height
above ground. The radio waves interact with objects located at
this height, thus causing multipath components (MPCs) in the
received signal. Furthermore, the line-of-sight (LOS) between
the transmitter (Tx) and the receiver (Rx) car might be blocked
occasionally and intermittently due to bigger vehicles or other
objects obstructing the direct LOS link. In these cases, the
MPCs become more relevant.

Multipath propagation increases the temporal and direc-
tional diversity at the Rx. Hence, appropriate techniques are
needed to decode the message under non-LOS conditions. In
order to test such techniques, numerical simulations on the
computer have to be performed. For that, a mathematical rep-
resentation of the channel is necessary. A well suited approach
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for modeling the vehicular channel is the so called geometry-

based stochastic channel modeling [1], where the scatterers
causing the MPCs are randomly placed beside the Tx-Rx link
according to a spatial distribution. In [1] the authors provide
an accurate parameterized model for LOS situations and its
parameters for highway and rural scenarios. From a receiver
point of view, it is not possible to exploit the MPCs, since
the received signal is going to be masked by noise. Therefore,
by only considering the relevant MPCs reaching the Rx we
can use a simpler channel model for numeric simulations. For
doing so, one has to identify all relevant MCPs first. Until
now, very few studies have been carried out tackling this
issue, also because there are not many vehicular radio channel
measurements available. Previous publications present some
early results obtained by visually analyzing the power delay
profile (PDP) and the Doppler spectral density [2].

Contributions of the paper: In this paper we present an
efficient and rigorous method for detecting only the relevant
MPCs in a set of vehicular radio channel measurements. By
using a clustering algorithm we group the MPCs in clusters,
each one corresponding to a scattering object. We propose to
use the MPC distance in the density-based spatial clustering

of applications with noise algorithm. Furthermore, we fully
characterize the cluster parameters. We take into account the
high variability of the environment, and therefore we carry out
a time-varying analysis of the measurement data.

Organization of the paper: In Section II, we describe several
scatterers identification techniques used in the literature. In
Section III, a brief overview of three tested clustering algo-
rithms is given and discussed. The measurement data used in
this paper is described in Section IV. Results and conclusions
are given in Sections V and VI, respectively.

II. APPROACHES FOR SCATTERER IDENTIFICATION

It is of great importance to identify which MPCs are truly
relevant from the Rx point of view in order to develop
simpler mathematical channel models to be used for system
performance analysis in numeric simulations. Next, we discuss
the previously used technique in the literature, and our new
approach.

A. Visual Inspection of the PDP

Previous work that aimed to analyze the scatterer con-
tributions in vehicular communications is based on visual
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Fig. 1. Scattering identification by visual inspection of the PDP.

inspection of the PDP [2]. By using video material recorded
during the measurements, the different MPCs observed in
the PDP can be visually identified and related to physical
objects which interact with the radio waves. Figure 1 shows
the MPCs identified with this approach for a vehicular channel
measurement. The main MPC contributions correspond to
other trucks and cars driving beside the Tx and the Rx car.

There are scenarios where it is clear and easy to distinguish
the different contributions and to identify the scatterers causing
the MPCs. But in other cases, the task becomes too difficult
to be done visually, such as in scenarios with rich scattering
and strong presence of diffuse components. Furthermore,
this method is very time-demanding and the results can be
considered to be too subjective. Therefore, we should rely on
an empirical automated methodology delivering more accurate
results.

B. Clustering of MPC using the LSF

In order to overcome the drawbacks of the previous method,
we introduce another domain in the analysis, the Doppler shift,
which gives additional accuracy in the scattering identification.
We do that by analyzing the local scattering function (LSF),
which is a time-varying representation of the delay-Doppler
power spectrum that is calculated as in [3], [4]. Figure 2 (a)
shows the 3D LSF for the same scenario represented in Fig.
1 at t = 5 s. Each peak of this plot represents a different
scatterer.

First of all, we have to distinguish only the relevant paths
from the received signal. There are several peaks with low
power not relevant compared to the highest peak. In order
to distinguish them, we use a very simple concept, the power
threshold criterion [5]: A path can only exist when it has more
power than a certain threshold. We choose the threshold to be
−25 dB from the highest detected peak. Another threshold is
required to remove the noise. All components below the noise
power plus 15 dB are set to 0. Figure 3 exemplifies the different
thresholds. These thresholds have been crosschecked using the
visual inspection approach.

In Fig. 2 (b) the detected paths are shown as red crosses
over the 2D view (delay-Doppler shift) of the LSF at t = 5 s.

Applying the peak detection algorithm described previously,
three paths can be identified. Figure 2 (b) is a zoomed-in
region of subfigure (a). We observe that each one of the
scattering contributions is defined by several MPCs, the red
crosses. For each scattering object we can group the MPCs in
clusters, shown with black ellipses. By using already existing
clustering algorithms, we can relate each MPC to one cluster
and therefore, to one scatterer. With that, we are able to
identify not only the number of relevant scatterers (number
or clusters) but also their extension in the delay and Doppler
domain.

III. TIME-VARYING CLUSTER PARAMETERS

Since the environment changes very rapidly due to the high
speed of the Tx, Rx, and other moving vehicles, it is logical
to expect that the number of clusters as well as their extension
also change in time. Therefore, we present the analysis of three
different clustering algorithms and describe the time-varying
parameters we use for characterizing the clusters.

A. Clustering Algorithms

We would like to develop a method for identifying the
number of relevant paths, and for each path, its extension in
the delay and Doppler domain.

We studied three different clustering algorithms, all of them
belonging to the family of partitioning algorithms. Next, we
describe them shortly and explain whether they are useful for
our purpose.

KPowerMeans algorithm

The KPowerMeans algorithm [5] takes into account the power
of the MPCs. This algorithm iteratively minimizes the total
sum of power-weighted distances of each path to its associated
cluster centroid. In the following, the single steps of the
algorithm are described in more detail.

1) The centroid starting positions µ(0)
I are chosen randomly

from the data set.
2) Every MPC xl is associated with a cluster centroid such

that the function of the total sum of differences, D =�L
l=1 Pld(xl, µI(i)

l
), is minimized, with L being the total

number of MPCs, and Pl the power of each MPC. We
use the MPC distance d [5], which allows to combine
parameters that come in different units and reads

MCDij =
�

d2
τ,ij + d2

ν,ij + d2
power,ij , (1)

where dτ,ij = ζτdE, dν,ij = ζνdE and dpower,ij =
ζpowerdE, and dE denotes the Euclidean distance be-
tween the MPC and the centroid at the moment. The
index I(i)

l is the cluster number for the ith multipath
in the ith iteration step I(i)

l = argmin[Pld(xl, µ
(i−1)
c )].

By including power into the distance function, cluster
centroids are pulled to points with strong powers.

3) Clusters are chosen such that they minimize the total
distance from their centroids.
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(a) LSF at t=5 s. (b) Peak detection on LSF. (c) Cluster identification.

Fig. 2. Peak detection and clustering of MPCs on the LSF.

We discarded this algorithm because we could not find com-
mon weighting factors, ζτ , ζν , and ζpower, for all analyzed
scenarios.

Substractive clustering algorithm

The subtractive clustering method [6] is an extension of the
mountain clustering method [7]. It assumes that each data
point is a potential cluster center and calculates a measure
of the likelihood that each data point would define the cluster
center, based on the density of surrounding data points [6].
The algorithm does the following:

1) Select the data point with the highest potential to be the
first cluster center.

2) Remove all data points in the vicinity of the first cluster
center as determined by radii (input parameter), in order
to determine the next data cluster and its center location.

3) Iterate on this process until all of the data is within radii

of a cluster center.
We discarded this algorithm because we could not find

a common radii for all scenarios. We should note that for
measurements with few clusters the algorithm works really
well, but when we apply the algorithm to measurements with
a large number of clusters we do not obtain reliable results.

Modified density-based spatial clustering of applications

with noise (mDBSCAN)

The DBSCAN algorithm [8] is designed to discover clusters
of arbitrary shape. It requires only one input parameter and
supports the user in determining an appropriate value for it.
Moreover, DBSCAN is efficient for a large spatial database.

The key idea is that for each point of a cluster the neigh-
borhood of a given radius (Eps) has to contain at least a
minimum number of points (MinPts), i.e., the density in the
neighborhood has to exceed some threshold.

To find a cluster, DBSCAN
1) starts with an arbitrary point p and retrieves all points

density-reachable from p with respect to Eps and
MinPts.

2) If p is a core point, this procedure yields a cluster with
respect to Eps and MinPts.

3) If p is a border point, no points are density-reachable
from p and DBSCAN visits the next points of the
database.

Fig. 3. LSF for a given time instant with power and noise thresholds shown.

We chose the algorithm parameters as MinPts = 1 and Eps

= 7. Our modification of the algorithm consists of using the
MPC distance to calculate the distance between points. The
MPC distance is defined in (1), but for this algorithm, the
power term is not necessary. With these values we observed
that the algorithm worked as we expected. Since we observed
that the clusters are larger in the Doppler domain, we give
more importance to it by setting the weighting factors to
ζν = 6 and ζτ = 5. We observed good results with this
algorithm for the training and the validation data sets, therefore
we decided to carry out our time-varying cluster parameter
analysis with the DBSCAN algorithm. Figure 2 (c) shows the
result of applying DBSCAN on the data displayed on the other
two subfigures. Each one of the MPCs is colored according
to the cluster assigned by the algorithm.

B. Extracted Parameters

After choosing the appropriate cluster algorithm we are
going to extract the following parameters: number of clusters,
and extension of the cluster in the delay and Doppler shift
domains.

• The number of clusters Nc identified in each experiment
indicates the number of relevant scattering objects.

• Each cluster is defined by its central position and its
extension in the delay Sτ and Doppler Sν domains,
which are going to be different depending on the studied
scenario. The extension is defined as the largest minus the
shortest point belonging to the cluster in both domains.

Since the environment in vehicular communications is
highly time-varying, the cluster parameters are going to be
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time-varying as well. Furthermore, we make a very simple
classification of the clusters between the first detected cluster
(the one with minimum delay) and the rest. This is necessary
due to the different characteristics observed between them, as
one can already see in Figs. 2 (b)-(c).

For each experiment, we will calculate the temporal ex-
pected value over the whole measurement run. Afterwards,
we will present the mean value over all measurements per
scenario. Based on these results, the conclusions will be drawn.

IV. MEASUREMENT DATA

The data used in this paper was collected during a measure-
ment campaign named DRIVEWAY’09 [2] conducted in Lund,
Sweden, in June 2009. The carrier frequency is 5.6 GHz, and
the measured bandwidth covers a total of 240 MHz in 769
frequency bins with a frequency separation ∆f = 312 kHz.
A measurement run consists of S = 32500 snapshots at
a repetition time of trep = 307.2 µs resulting in a total
measurement time of 10 s.

The Tx and the Rx car are equipped with a channel
sounder. Each car has mounted a linear array with four circular
patch antennas perpendicular to the driving direction. The
antennas had main lobes such that they covered the four main
propagation directions [9]. For the analysis performed in this
paper, we consider the combined antenna radiation pattern, so
that we achieve a 360◦ coverage in the azimuth plane.

Even though the data collected in the DRIVEWAY’09
campaign covers a wide range of scenarios of importance for
safety-related ITS applications, in this paper we are going to
focus on one of them. We select the general LOS obstruction

scenario, where the Tx and Rx are driving in the same
direction on the highway at around 120 km/h each. There are
big trucks circulating in both directions beside them. During
the measurement runs, the LOS between the two cars is
intermittently obstructed.

V. RESULTS

We have a total of 12 measurement runs available preformed
in the general LOS obstruction scenario. In this section we are
going to present the detailed result for one of the measurement
runs and calculate the temporal mean of the cluster parameters.
At the end, we give a summary table of the temporal means
for all 12 measurement runs and the average value for the
whole scenario.

We calculated the LSFs from the data, detected the peaks,
and applied the clustering algorithm. In Fig. 4 the time-varying
cluster parameters are shown. Figure 4 (a) plots the number
of detected clusters. During the whole measurement run there
are 3 to 4 detected clusters, which correspond to the visually
identified paths in Fig. 1. During the second half of the
measurement, 5 clusters are more often detected. This is due
to the fact, that the LOS is not blocked anymore and new
MPCs appear. We have not implemented yet a cluster tracking
algorithm, this is why the number of clusters oscillates.

The extension in the delay and Doppler domain for the
first detected cluster is depicted in Figs. 4 (b) and (c). The

TABLE I
MEAN VALUES OF THE TIME-VARYING CHANNEL PARAMETERS FOR

MEASUREMENT 1.

Parameters Nc Sτ,1st[ns] Sτ [ns] Sν,1st[Hz] Sν [Hz]
Mean 4 31.92 14.81 276.69 83.70
Std 0.83 5.81 8.01 70.66 40.51
Max 6 45.83 104.17 508.63 534.06
Min 2 25.00 4.17 127.16 25.43

delay extension remains basically constant during the total
measurement time of 10 s. However, there are three time
intervals where it increases considerably, at around 1, 4, and
8 s. At these time instances one of the objects driving in the
opposite direction is precisely placed between Tx and Rx. The
MPCs coming from this scatterer are very close to the ones of
the LOS and the clustering algorithm is not able to separate
them. The detected cluster consists of two merged clusters and
therefore its extension is larger. A similar phenomena happens
for the extension in the Doppler domain, nevertheless not that
accentuated. Table I lists the temporal mean, maximum, and
minimum value for the cluster parameters, as well as the
standard deviation for this measurement throughout the 10 s
run. While for the first detected cluster, the mean, maximum,
and minimum values for the extension in the delay and
Doppler domain are close to each other, the same values for
the other detected clusters are far apart. The minimum values
correspond to clusters with a single MPC. The extension
happens to be equal to the delay or Doppler resolution, 4.17 ns
and 25.43 Hz respectively. When two or more clusters are very
close to each other, the used algorithm cannot distinguish them
and it treats them as a single cluster with larger extension,
giving as a result a maximum extension of 104.17 ns in the
delay domain, and 534.06 Hz in the Doppler domain. Since
this does not happen in a general basis, we provide the
standard deviation values, which we consider can be useful
for developing a channel model based on this cluster-based
approach.

We performed the same analysis for the 12 measurement
runs. Table II presents their temporal mean values for the
number of clusters, delay and Doppler extension for the first,
and for the rest of the detected clusters. At the end of the table,
there is the average among the whole set of measurements, and
also the average of the standard deviation calculated for each
measurement run. The number of detected clusters oscillates
between 1 and 7. However, one cluster was detected in only
one occasion, in measurement 6. During this measurement,
there is only one strong component, which intermittently
disappears, this is why there are no values for the spreads
for the other clusters. The results regarding cluster spreads
show more agreement among the 12 measurements. Clusters
show an ellipsoidal shape, more pronounced in the first one.
The first detected cluster presents different characteristics than
the rest:

• Its extension in both, the delay and Doppler domain is
larger than for the others, and with also larger standard
deviation.
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(a) Number of detected clusters. (b) Extension in delay of the first detected cluster. (c) Extension in Doppler of the first detected
cluster.

Fig. 4. Time-varying cluster parameters for a single measurement run.

TABLE II
TEMPORAL MEAN VALUE OF THE CLUSTER PARAMETERS

Parameters Nc Sτ,1st[ns] Sτ [ns] Sν,1st[Hz] Sν [Hz]
Meas 1 4 31.92 14.81 276.69 83.70
Meas 2 7 45.22 14.76 383.40 84.05
Meas 3 7 49.27 15.10 358.38 84.78
Meas 4 4 34.23 14.73 290.63 83.14
Meas 5 2 38.33 14.69 200.40 83.06
Meas 6 1 17.80 − 89.82 −
Meas 7 6 50.25 14.60 391.64 84.14
Meas 8 4 43.38 14.60 308.74 83.85
Meas 9 3 33.35 14.54 296.22 83.35
Meas 10 6 36.80 13.25 208.03 77.92
Meas 11 3 28.83 14.74 332.54 83.39
Meas 12 2 37.8 14.86 144.65 83.53

Total avg 5 37.26 14.61 273.43 83.20
Std avg 1.58 8.23 6.65 78.81 30.91

• It is present during the whole measurement run (at least
for this specific scenario).

• It has the highest power.
• Since Tx and Rx drive in the same direction and at similar

speed, it does not change its position in the delay-Doppler
plane.

On the other hand, the rest of the detected clusters present a
different behaviour:

• There are clusters appearing and disappearing quickly,
caused by objects which become only relevant when they
are close to the Tx-Rx link.

• There are clusters remaining longer active and moving,
caused by objects (mainly trucks and bridges) which have
a stronger influence on the radiowave propagation.

VI. CONCLUSIONS

We presented in this paper a new method for scatterers
identification based on clustering of multipath components
(MPCs). The approach used so far by other researchers is
based on visual inspection of the power delay profile. We
include a new domain in the analysis by using the local
scattering function (LSF). By applying first a peak detec-
tion algorithm, we are able to separate only the relevant
components from the receiver point of view. Afterwards, a
clustering algorithm is used for assigning each one of the

MPCs to its cluster, which actually represents a scattering
object. The method is run on a computer and there is no need
anymore of a person looking through the data and recorded
videos during the measurements, which can be highly time-
demanding. The algorithm is programmed so that it delivers
the number of detected clusters (i.e., detected scatterers), and
the extension of the cluster in the delay and Doppler domain.
Furthermore, given the time variability observed in vehicular
communications, we took into account that the cluster param-
eters are time-varying. We applied the method to a set of
12 measurement runs performed under general line-of-sight

(LOS) obstruction conditions, where the LOS between the
transmitter and receiver gets obstructed intermittently during
the measurement. We observed that the detected clusters have
an ellipsoidal shape with its longer extension in the Doppler
domain. The properties of the first detected cluster are different
than for the rest: the cluster is larger, does not move in the
delay-Doppler plane, remains throughout the whole measure-
ment run, and has the highest power. These results, we show
the usefulness of a new tool for scatterer identification, which
can help researchers in developing simpler but yet accurate
vehicular channel models.
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[2] A. Paier, L. Bernadó, J. Karedal, O. Klemp, and A. Kwoczek, “Overview

of Vehicle-to-Vehicle Radio Channel Measurements for Collision Avoid-
ance Applications,” in IEEE 71st Vehicular Technology Conference,
Taipei, Taiwan, May 2010.

[3] G. Matz, “On non-WSSUS Wireless Fading Channels,” IEEE Transac-

tions on Wireless Communications, vol. 4, pp. 2465–2478, September
2005.
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