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ABSTRACT

We focus on sphere decoding for the uplink of a multi-
carrier (MC) code division multiple access (CDMA) system
based on orthogonal frequency division multiplexing (OFDM).
The users move at vehicular speed, hence the multiple-input
multiple-output (MIMO) channel from each user to the base-
station is time-varying. The receiver at the base-station per-
forms iterative multi-user (MU) detection using parallel in-
terference cancelation followed by a sphere decoder. Such a
MU-MIMO detector is less complex and more robust to chan-
nel estimation errors than a linear minimum mean square error
(LMMSE) filter as was shown by the authors recently.

However, for time-varying channels the complexity of the
sphere decoder is still high, due to a QR-factorization for each
symbol. In this paper we develop a novel implementation of
the sphere decoder to reduce complexity. Time-limited snap-
shots of a bandlimited fading process span a subspace with
very small dimensionality. The same subspace is spanned by
prolate spheroidal sequences. Exploiting this specific structure
we develop a new sphere decoding algorithm for time-varying
channels that achieves considerable computational complexity
reduction compared to a classical sphere decoder.

I. INTRODUCTION

We consider the uplink of a multi-carrier (MC) code-division
multiple access (CDMA) system based on orthogonal fre-
quency division multiplexing (OFDM) with N subcarriers.
Each user k ∈ {1, . . . , K} has T transmit antennas and the
base-station is equipped with R receive antennas. The receiver
performs iterative parallel interference cancelation (PIC), chan-
nel estimation and multi-user (MU) detection jointly [1]. For
multi-user detection a sphere-decoder is employed.

We show in [1] that sphere decoding is more robust to chan-
nel estimation errors than a linear minimum mean square er-
ror (LMMSE) filter. Furthermore, the computational complex-
ity is reduced as well. However, for time-varying channels
the complexity of the sphere decoder is still high since a QR-
factorization is needed for each received data symbol.
Contribution of the Paper: We model the time-varying chan-
nel using a subspace representation. This model allows de-
veloping a novel implementation of the sphere decoder for
time-varying channels that exploits the structure of the time-
varying channel. Our new algorithm allows considerable com-
putational complexity reduction.

∗The work of Charlotte Dumard and Thomas Zemen is funded by the
Wiener Wissenschafts- Forschungs- und Technologiefonds (WWTF) in the ftw.
project ”Future Mobile Communications Systems” (Math+MIMO).

Notation: We denote a column vector by a and its i-th element
with a[i]. The transpose of a matrix A is given by AT and its
conjugate transpose by AH. A diagonal matrix with elements
a[i] is written as diag(a) and the Q×Q identity matrix as IQ.
The norm of a is denoted through ‖a‖.
Organization of the Paper: We present the signal model in
Section II. The time-variant channel model utilizing the sub-
space structure of a bandlimited fading process is introduced in
Section III. Section IV. reviews the sphere decoding algorithm
and our new subspace based sphere decoder is presented in Sec-
tion V. The computational complexity is discussed in Section
VI. We conclude the paper in Section VII.

II. SYSTEM MODEL

In [1] we present an iterative MU-MIMO receiver for a MC-
CDMA uplink, performing PIC followed by sphere decoding.
This paper builds on [1] introducing a novel implementation of
the sphere decoder more suitable for time-varying channels.

A. Multi-Antenna Transmitter

Let us consider the transmitter of user k ∈ {1, . . . , K}. We
denote its transmit antenna t ∈ {1, . . . , T} using the indexing
(k, t). (M − J)T data symbols are jointly coded, interleaved,
mapped to a QPSK constellation and split into T blocks of
length M − J . Transmit antenna (k, t) sends a block of M
OFDM symbols, including J distributed pilot symbols allow-
ing for channel estimation. Data symbol b(k,t)is spread over
all N subcarriers using a spreading sequence s(k,t) ∈ C

N with
independent identically distributed elements from a QPSK con-
stellation. Thus, transmit antenna (k, t) sends the OFDM sym-
bols s(k,t)b(k,t)[m] for m �∈ P , where P ⊂ {0, . . . , M − 1} is
the set of pilot positions in each data block [2].

B. Iterative Multi-Antenna Receiver

The iterative receiver structure is shown in Fig. 1. The receiver
is equipped with R antennas. The propagation channel from
transmit antenna (k, t) to receive antenna r is characterized by
the frequency response gr,(k,t)[m] ∈ C

N at time instant m
with elements gr,(k,t)[m, q]. The index q ∈ {0, . . . , N − 1}
denotes the subcarrier index. The related effective spreading
sequence is defined by

s̃r,(k,t) = diag(gr,(k,t)[m])s(k,t) . (1)

In the following, we will omit the time index m unless neces-
sary. The contribution of transmit antenna (k, t) to the signal
at receive antenna r is s̃r,(k,t)b(k,t). At receive antenna r, the
signals from all transmit antennas of all users add up
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Figure 1: Iterative MC-CDMA receiver.

yr =
K∑

k=1

T∑
t=1

s̃r,(k,t)b(k,t) + nr , (2)

where nr is additive white Gaussian noise with zero mean and
variance σ2

zIN . This can be written in matrix notation as

yr = S̃rb + nr , (3)

where S̃r = [s̃r,(1,1), . . . , s̃r,(K,T )] ∈ C
N×KT is the effective

spreading matrix at antenna r and b = [b(1,1), . . . , b(K,T )]T ∈
C

KT contains all KT transmitted symbols.
Denoting by y = [yT

1 , . . . ,yT
R]T the vector containing the

R received signals stacked upon each other, we can write

y = S̃b + n , (4)

where S̃ = [S̃
T

1 , . . . , S̃
T

R]T ∈ C
NR×KT contains all R effec-

tive spreading matrices. The complex Gaussian noise vector
n = [nT

1 , . . . ,nT
R]T has zero-mean and variance σ2

zINR.
The contribution of user k stemming from symbols b(k) =

[b(k,1), . . . , b(k,T )]T is defined as y(k) = Ŝ
(k)

b(k) + n(k),
where

Ŝ
(k)

=




s̃1,(k,1) · · · s̃1,(k,T )

... s̃r,(k,t)

...
s̃R,(k,1) · · · s̃R,(k,T )


 ∈ C

NR×T (5)

contains the effective spreading sequences from all transmit an-
tennas of user k to all receive antennas.

We perform PIC for user k by removing the contribution of
users k′ �= k using soft-symbol estimates

ỹ(k) = y −
∑
k′ �=k

Ŝ
(k′)

b̃
(k′) ≈ Ŝ

(k)
b(k) + n(k) . (6)

The soft symbols in b̃
(k′)

are computed from the extrinsic prob-
abilities supplied by the BCJR decoder [3], see [1]. We apply
the sphere decoding algorithm in order to detect b(k), see Sec.
IV. and V.

III. TIME-VARYING CHANNEL MODEL

The maximum variation in time of the wireless channel is up-
per bounded by the maximum normalized one-sided Doppler

bandwidth νDmax = vmaxfC
c0

TS, where vmax is the maximum
(supported) velocity, TS is the OFDM symbol duration, fC is
the carrier frequency and c0 the speed of light. Time-limited
snapshots of the bandlimited fading process span a subspace
with very small dimensionality. The same subspace is spanned
by discrete prolate spheroidal (DPS) sequences [2] {ui[m]} de-
fined as [4]

λiui[m] =
M−1∑
l=0

sin(2πνDmax(l − m))
π(l − m)

ui[l] . (7)

We are interested in describing the time-varying frequency
selective channel gr,(k,t) ∈ C

N for the duration of a single
data block IM = {0, . . . , M − 1}. For m ∈ IM we write
gr,(k,t)[m] as linear superposition of the first D DPS sequences
index limited to the time interval IM ,

ĝr,(k,t)[m] = Γr,(k,t)f [m] , (8)

where f [m] = [u1[m], . . . , uD−1[m]]T ∈ C
D for m ∈ IM .

In practical cases, D is of the order of 3 to 5 [2, 5]. Dedicated
pilot symbols together with feedback soft symbols are used to
estimate the coefficients in Γr,(k,t) ∈ C

N×D as described in
[2, 5, 6].

Inserting (8) in (1) we can write

s̃r,(k,t)[m] = diag(s(k,t))Γr,(k,t)f [m] (9)

and inserting (9) into (5) we obtain Ŝ
(k)

= Γ̂
(k)

F̃ [m], where

Γ̂
(k)

=




diag(s(k,1))Γ1,(k,1) · · · diag(s(k,T ))Γ1,(k,T )

...
. . .

...
diag(s(k,1))ΓR,(k,1) · · · diag(s(k,T ))ΓR,(k,T )




and

F̃ [m] =




f [m] 0 0

0
. . . 0

0 0 f [m]


 ∈ C

DT×T . (10)

The received signal of user k after PIC (6) finally becomes

ỹ(k)[m] = Γ̂
(k)

F̃ [m]b(k)[m] + n(k)[m] . (11)

Note that Γ̂
(k)

is time-invariant but user dependent while F̃ [m]
is common to all users but time-varying. This specific structure
will be essential for the low complexity sphere decoder which
we develop in Section V.
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IV. CLASSICAL SPHERE DECODER

In this section we briefly recall the classical sphere decoding
algorithm for a MIMO MC-CDMA system [1]. Dropping the
user index k in (6) and assuming identity of the left and right-
most terms we obtain ỹ = Ŝb + n. A ML detector searches
for the vector b in the discrete alphabet AT that minimizes the
distance ‖ỹ − Ŝb‖, and is defined by

b̂ = argmin
b∈AT

{‖ỹ − Ŝb‖2} . (12)

A sphere decoder [7,8] restrains this search to a sphere centered
on ỹ with radius ρ, thus focusing on the closest elements only

b̂ = argmin
b∈AT |‖ỹ−Ŝb‖2<ρ2

{‖ỹ − Ŝb‖2} . (13)

This corresponds to a ML search under the so-called sphere
constraint ‖ỹ − Ŝb‖2 < ρ2.

Let us consider the thin QR factorization of the matrix Ŝ. We
write Ŝ = QR, where Q ∈ C

NR×T is a unitary matrix and
R ∈ C

T×T is upper triangular. This factorization is unique
[9]. Matrix Q being unitary, the sphere constraint is equivalent
to ‖z − Rb‖2 < ρ2 where z = QHỹ. The error vector to be
minimized is given by ε = z − Rb.

For t ∈ {1, . . . , T}, we define the partial vectors z(t) =
[z[t], . . . , z[R]]T and b(t) and ε(t) similarly. The partial upper
triangular matrix R(t) ∈ C

(T−t+1)×(T−t+1) is given by

R(t) =




Rt,t · · · Rt,T

0
. . .

...
0 0 RT,T


 . (14)

Matrix R being upper triangular, ε(t) = z(t) − R(t)b(t) can
be expressed using the partial vectors and matrices only. The

squared partial distance d(t)2 = ‖ε(t)‖2 =
T∑

i=t

|ε[i]|2 is com-

puted for t decreasing using the iterative relation

d(t)2 = d(t + 1)2 + |ε[t]|2 . (15)

As soon as an index t is reached, such that d(t)2 > ρ2, all
b ∈ AT having the partial b(t) ∈ AT−t+1 are discarded since
they lie outside the sphere. The set of remaining candidates
(with d(t) ≤ ρ) at step t is denoted Ct and depends on the
actual realization of b, Ŝ and n. The T steps of the classical
sphere decoder are summarized in Table 1. Although being a
low-complexity implementation of a ML detector, the classical
sphere decoder requires a QR factorization at every time index.
This is too demanding for time-varying channels. In the next
section, we use the model (11) and the time-non-dependency of

the matrix Γ̂
(k)

to develop a low-complexity implementation.

V. SUBSPACE-BASED SPHERE DECODER

In this section we exploit the subspace structure of the time-
varying channel to reduce the computational complexity of the

step T : For all b[T ] ∈ A, compute d(T )2

If d(T )2 ≤ ρ2, store b[T ] ∈ CT

...
step t: For all [b[t + 1], . . . , b[T ]]T ∈ Ct+1, for all b[t] ∈ A,

compute d(t)2 from d(t + 1)2 using (15) or (23)
If d(t)2 ≤ ρ2, store [b[t], . . . , b[T ]]T ∈ Ct

...
step 1: For all [b[2], . . . , b[T ]]T ∈ C2, for all b[1] ∈ A,

compute d(1)2 from d(2)2 using (15) or (23)
If d(1)2 ≤ ρ2, store [b[1], · · · , b[T ]]T ∈ C1

Table 1: The T steps of the Sphere Decoder

sphere decoder. Let us first recall the received signal after PIC
(11), dropping index (k)

ỹ[m] = Γ̂F̃ [m]b[m] + n[m] . (16)

We consider the thin QR factorization [9] of Γ̂ = QR where
Q ∈ C

NR×DT is unitary and R ∈ C
DT×DT is upper triangu-

lar. Multiplying (16) from the left side with QH we obtain

z[m] = QHỹ[m] = RF̃ [m]b[m] + QHn[m] . (17)

We rewrite the ML detector after QR factorization of Γ̂

b̂ = argmin
b∈AT

{‖z[m] − RF̃ [m]b‖2} . (18)

To make use of the block diagonal structure of F̃ [m] (10),
we decompose the matrix R into blocks of size D × D

R =




∆1,1 ∆1,2 · · · ∆1,T

0 ∆2,2 · · · ∆2,T

...
. . .

. . .
...

0 · · · 0 ∆T,T


 , (19)

where the matrices ∆t,t ∈ C
D×D are upper triangular and the

matrices ∆t,t′>t ∈ C
D×D are full.

The sphere constraint is given by ‖z[m]−RF̃ [m]b‖2 < ρ2.
We define the difference vector ε = z[m] − RF̃ [m]b. For
t ∈ {1, . . . , T} we write the partial vectors

z(t) = [z[D(t − 1) + 1], . . . , z[DT ]]T ∈ C
D(T−t+1) ,

b(t) = [b[t], . . . , b[T ]]T ∈ C
T−t+1 ,

ε(t) = [ε[D(t − 1) + 1], . . . , ε[DT ]]T ∈ C
D(T−t+1) ,

(20)
and the partial matrices

R(t) =




∆t,t · · · ∆t,T

0
. . .

...
0 0 ∆T,T


 ∈ C

D(T−t+1)×D(T−t+1) ,

F̃
(t)

=




f [m] 0 0

0
. . . 0

0 0 f [m]


 ∈ C

D(T−t+1)×(T−t+1) .

(21)
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We also define ẑ(t) = [zD(t−1)+1, . . . , zDt]T ∈ C
D and

∆̂
(t)

= [∆t,t · · ·∆t,T ]T ∈ C
D×D(T−t+1).

The partial distance d(t) is given by

d(t)2 = ‖ε(t)‖2 = ‖z(t) − R(t)F̃
(t)

b(t)‖2

=
T∑

i=t

‖ẑ(i) − ∆̂
(i)

F̃
(i)

b(i)‖2
(22)

d(t)2 = d(t + 1)2 + ‖ẑ(t) − ∆̂
(t)

F̃
(t)

b(t)‖2 (23)

Similarly as for the classical sphere decoder, d(1)2 = ‖ε‖2

can be iteratively computed for decreasing t and starting from
d(T )2 = ‖ε(T )‖2 using (23). The T steps of the subspace based
sphere decoder are the same as for the classical sphere decoder
in Table 1 with new definitions of the partial vectors, matrices
and distances.

An illustration of the t-th step of the subspace based sphere
decoder algorithm is given in (24) and (25).

VI. ON THE COMPUTATIONAL COMPLEXITY

We define a flop as a floating point operation (addition, sub-
straction, multiplication, division or square root) in the real
domain [9]. Thus, one complex multiplication (CM) requires
4 real multiplications and 2 additions, leading to 6 flops. Sim-
ilarly, one complex addition (CA) requires 2 flops. We recall
that qt denotes the number of candidates in Ct at step t, both
are random variable since they depend on the realization of b,
Ŝ and n. Q = |A| is the size of the alphabet.

A. Details of the Operations

According to the algorithm presented in Section V., for a single
data block of length M − J we have to perform

• one thin QR factorization of size NR×DT , with compu-
tational complexity [9]

cQR = 2DT

(
2(NR)2 − DNRT +

(DT )2

3

)
flops ,

• M−J runs of the subspace based sphere decoder (SBSD)
with complexity cSBSD[m], performing the following op-
erations per step t and time instant m:

– computation of v(t)[m] = F̃
(t)

[m]b(t) requiring:

∗ D(T − t) CM for all b(t+1) ∈ Ct+1,
∗ D CM for all bt ∈ A.

– computation of ∆̂
(t)

v(t)[m] requiring:

∗ D2(T − t) − D(D−1)
2 CM and D2(T − t) −

D(D+1)
2 CA for all b(t+1) ∈ Ct+1,

∗ D(D+1)
2 CM and D(D−1)

2 CA for all bt ∈ A.

This leads to the complexity at time instant m

cSBSD[m] = 2D [(T − t)(4D + 3) − 2D + 1]
T−1∑
i=1

qt+1[m]

+4TDQ(D + 2) flops .
(26)
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Figure 2: Cumulative distribution function (cdf) of the subspace-based
sphere decoder complexity cSBSD[m] (26). We show both cases of perfect
channel knowledge (per) and channel estimation (est).

Using simulations and (26), we obtain an empirical cumula-
tive distribution function (cdf) of the computational complex-
ity, shown in Fig. 2. For simulations, we define the radius ρ as
the distance to the zero-forcing solution

ρ2 = ‖ỹ −
(
Ŝ

H
Ŝ

)−1

Ŝ
H
ỹ‖2 . (27)

This way we avoid the sphere being empty. We also show
an upper bound on the figure, which is the complexity using
sphere decoding to perform exhaustive search, i.e. sphere de-
coding with infinite radius. In this case, qt = QT−t becomes
deterministic.

The computational complexity for a single data block is fi-
nally given by CSBSD = cQR +

∑
m �∈P

cSBSD[m].

B. Classical versus Subspace-Based Sphere Decoding

Mathematically, the subspace based sphere decoder presented
here is equivalent to the classical sphere decoder. Using both
methods, the ML solution (12) is obtained. We show the
bit error rate (BER) versus SNR curves in Fig. 3 for K ∈
{16, 24, 32} users. The detailed simulation setup can be found
in [1]. We compare results using perfect channel knowledge
and LMMSE channel estimates.

Utilizing the subspace structure of the time-varying chan-
nel enables a more efficient implementation. We compare
the global computational complexity of both the classical and
the subspace based sphere decoder for detection of a block of
M − J symbols.

With the classical sphere decoder (CSD), the following op-
erations have to be done per symbol m �∈ P

• One thin QR factorization of size NR × T ,

cQR = 2T

(
2(NR)2 − NRT +

T 2

3

)
flops , (28)

• one sphere decoder iteration with complexity

cCSD[m] = 4(2T−2t+1)
T−1∑
t=1

qt+1[m]+4T (4Q+1) flops .
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d(1)2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




z1

...

zD(t−1)+1

...
zDt

...
zDT




−




∆1,1 ∆1,2 · · · · · · ∆1,T

...
. . .

. . .
. . .

...

0
. . . ∆t,t · · · ∆t,T

...
. . .

. . .
. . .

...
0 · · · · · · 0 ∆T,T







f[m] 0
...

. . .

0
. . .

...
. . .

0 · · ·

· · · · · · 0

. . .
. . .

...

f[m] · · · 0

. . .
. . .

...
· · · 0 f[m]







b1
...

bt

...
bT




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(24)

d(t)2 = d(t + 1)2+

∥∥∥∥∥∥∥




zD(t−1)+1

...
zDt


− [

∆t,t · · · ∆t,T

]



f[m] 0 0

0
. . . 0

0 0 f[m]







bt

...
bT




∥∥∥∥∥∥∥

2

ẑ(t) ∆̂
(t)

F̃
(t)

[m] b(t)

(25)
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Figure 3: BER vs. SNR for subspace based sphere decoding, with K ∈
{16, 24, 32} users and perfectly known channel (solid lines) or LMMSE chan-
nel estimates (dashed lines). We also show the single user bound (SUB).

Thus the complete complexity over the block of size M − J is
CCSD = (M − J) · cQR +

∑
m �∈P

cCSD[m].

Fig. 4 shows a comparison of the computational complex-
ity cdf using the empirical number of candidates qt from the
simulations. We show the computational complexity for the
classical and the subspace based sphere decoder. Results are
given using the empirical distribution and the upper bound over
the whole set AT (with ρ = ∞) is shown for comparison.
Computational complexity is reduced by more than one order
of magnitude when using the subspace based sphere decoder.
For comparison we also show the computational complexity of
LMMSE detection of a block of length M − J [1].

VII. CONCLUSIONS

We have presented a novel implementation of a sphere decoder.
We make use of the basis expansion channel model to develop
a low-complexity sphere decoder specially suitable for time-
varying channels. This method allows considerable computa-
tional complexity reduction.
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[2] T. Zemen and C. F. Mecklenbräuker, “Time-variant channel estimation us-
ing discrete prolate spheroidal sequences,” IEEE Trans. Signal Processing,
vol. 53, no. 9, pp. 3597–3607, September 2005.

[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of lin-
ear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, no. 2, pp. 284–287, Mar. 1974.

[4] D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and un-
certainty - V: The discrete case,” The Bell System Technical Journal,
vol. 57, no. 5, pp. 1371–1430, May-June 1978.
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[6] C. F. Mecklenbräuker, J. Wehinger, T. Zemen, H. Artés, and F. Hlawatsch,
“Multiuser MIMO channel equalization,” in Smart Antennas — State-of-
the-Art, ser. EURASIP Book Series on Signal Processing and Communi-
cations, T. Kaiser, A. Bourdoux, H. Boche, J. R. Fonollosa, J. B. Andersen,
and W. Utschick, Eds. New York (NY), USA: Hindawi, 2006, ch. 1.4,
pp. 53–76.

[7] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complex analysis,” Mathematics of
Computation, vol. 44, no. 169-170, pp. 463–471, April 1985.

[8] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bölcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1566
– 1577, July 2005.

[9] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore
(MD), USA: Johns Hopkins University Press, 1996.


