Cluster Lifetime Characterization for Vehicular Communication Channels

Mingming Gan\(^1\), Zhinan Xu\(^1\), Christoph F. Mecklenbräuker\(^2\), Thomas Zemen\(^1,3\)

\(^1\) FTW Forschungszentrum Telekommunikation Wien, Vienna, Austria
\(^2\) Institute of Telecommunications, Vienna University of Technology, Vienna, Austria
\(^3\) AIT Austrian Institute of Technology, Vienna, Austria

Abstract—Simulating the time-variance of vehicular channels correctly remains a challenging topic. We are interested in parsimonious mathematical channel models, in which only significant groups of multipath components (MPCs) are included. The MPCs are grouped in the delay-Doppler domain, which enables the development of cluster-based channel models. However, the characterization of time-variant vehicular channel parameters based on a joint clustering-and-tracking framework has not been adequately studied previously.

In this paper, we focus on the cluster lifetime characterization for vehicular communication channels. A joint cluster identification-and-tracking approach based on the local scattering function (LSF) is applied, which takes the delay and Doppler domains into consideration. The proposed approach uses a density-based spatial clustering of applications with noise (DBSCAN) algorithm for identification. The cluster centroid tracking is based on the multipath component distance (MCD) matrix. We apply this approach to real-world vehicular channel measurements. The time-varying cluster lifetimes are tracked according via the cluster centroids for two scenarios. The results indicate that the detected cluster related to the line-of-sight (LOS) component persists throughout the measurement run and contributes the highest gain level for both scenarios. The clusters detected from traffic signs and large moving vehicles also persist for a longer period, whereas many clusters associated with discrete scatterers along the roadside appear for very short periods.

I. INTRODUCTION

In recent years, vehicle-to-vehicle (V2V) communication systems have received a lot of interest. An understanding of V2V propagation channels is significant for the development of suitable communication standards. Vehicular communication channels are characterized by a non-stationary time- and frequency-selective fading process due to the fast changing propagation conditions. Local stationarity can be assumed for a finite region in time and frequency, so a time and frequency dependent local scattering function (LSF) is calculated [1]. Therefore, the wide-sense stationarity and uncorrelated-scattering (WSSUS) assumption holds approximately in this finite region [2]. The LSF is a multitaper estimate of the two-dimensional (2-D) power spectral density in delay and Doppler, where each peak is composed of several multipath components (MPCs) stemming from scatterers in the environment [3].

The well-known geometry-based stochastic channel modeling (GSCM) is an usual approach to model vehicular channels by placing scatterers randomly besides the link between transmitter (Tx) and receiver (Rx) according to a spatial distribution. However, from a Rx point of view, some contributions from MPCs in the received signal might be masked by the noise. In measured vehicular channels, it can be seen that the significant MPCs tend to be grouped in clusters based on the LSF [3], where the issue of cluster tracking over time is not addressed. We will use this observation to reduce the numerical complexity of GSCMs enabling a real time implementation for transceiver testing. Since clusters can be used to model time-variant scenarios, a reliable joint cluster identification-and-tracking approach is required [4].

In the present work, we present a joint cluster identification-and-tracking approach based on the power spectral density in delay and Doppler. The contributions of this paper are four-fold: i) We identify clusters for each stationarity region firstly based on the density-based spatial clustering for applications with noise (DBSCAN) algorithm. ii) The predicted cluster centroids are tracked according to the multipath component distance (MCD) matrix among the centroids. iii) We fully characterize the cluster lifetimes based on vehicular channel measurements data. iv) We analyze the cluster lifetimes corresponding to the geometry information of the measurements. Note that the cluster lifetime in this paper describes for how many stationarity regions a cluster exists. This parameter is significant for modeling the birth/death process of smoothly time-varying channels [5].

II. IDENTIFICATION-AND-TRACKING APPROACH

We calculate the LSF from measurement data firstly. Then we distinguish relevant MPCs based on the defined thresholds. Afterwards, the DBSCAN clustering algorithm is introduced for identification. Furthermore, we describe the idea for cluster tracking based on the distance between the clusters’ centroids.

A. LSF Estimator

A significant feature of the vehicular channel is the fast-changing propagation conditions. Thus, the observed fading process is nonstationary. Due to the environment changes with a finite rate, the nonstationary can be overcome by
approximating the fading process to be local stationarity for a region with finite extent in time and frequency [1]. The locally stationarity region is defined as having $M \times N$ samples in time and frequency, respectively. The total number of snapshots and frequency bins are denoted as S and Q, respectively. Therefore, the time index of each stationarity region is $k_t \in \{0, \ldots, \lfloor S/M \rfloor - 1\}$, and the frequency index of each stationarity region is $k_f \in \{0, \ldots, \lfloor Q/N \rfloor - 1\}$. k_t and k_f correspond to the center of each stationarity region. An estimate of the discrete LSF is defined as $\tilde{C}[k_t; k_f; n, p]$ [2], where $n \in \{0, \ldots, N - 1\}$ is the delay index, and $p \in \{-M/2, \ldots, M/2 - 1\}$ is the Doppler index. In our work, we are interested in $\tilde{C}[k_t; n, p]$, where $k_f = 0$ because of $Q = N$. The LSF $\tilde{C}[k_t; n, p]$ is a time-varying representation of the delay-Doppler spectrum.

B. Selection of Relevant MPCs

Among the received signal, there are several peaks with low gain compared to the highest peaks. These low peaks are not so important for the cluster identification. We use a simple concept as described in [3] to select the relevant peaks, where the peaks are related to the relevant MPCs. The concept is based on the threshold criterion, which defines that a path can exist only if its gain is higher than a certain threshold. This threshold is chosen as -25 dB from the highest detected peak. In addition, we choose another threshold to remove the noise.

\begin{equation}
\begin{align*}
\gamma_{(k_t)} &= \frac{1}{\sqrt{\epsilon}} \sum_{l \in \mathcal{X}(k_t)} P_l^2(k_t, k_f) \\
&= \left[\frac{1}{\gamma_{(k_t)}} \sum_{l \in \mathcal{X}(k_t)} P_l^2(k_t, k_f) \right]^{1/2},
\end{align*}
\end{equation}

where $\gamma_{(k_t)} = \sum_{l \in \mathcal{X}(k_t)} P_l^2(k_t)$ is the utility gain.

The subsequent sets of old $C(k_t)$ and new $C(k_t+1)$ cluster centroids $\mu_{c_{old}}^{(k_t)}$ and $\mu_{c_{new}}^{(k_t+1)}$, are considered, where $k_t + 1 \leq \lfloor S/M - 1 \rfloor$, $c_{old} \in \{1, \ldots, C(k_t)\}$ and $c_{new} \in \{1, \ldots, C(k_t+1)\}$ are the cluster centroids’ indices at k_t and $k_t + 1$, respectively. The MCD is chosen as suitable distance matrix between the centroids $\mu_{c_{old}}^{(k_t)}$ and $\mu_{c_{new}}^{(k_t+1)}$, with elements defined as [5]

\begin{equation}
[D]_{c_{old}, c_{new}} = \text{MCD}(\mu_{c_{old}}^{(k_t)}, \mu_{c_{new}}^{(k_t+1)}) \nonumber
\end{equation}

where $[D]_{c_{old}, c_{new}}$, $[D]_{c_{old}, c_{new}}^2$, and $[D]_{c_{old}, c_{new}}^3$ are the squared Euclidean distance for the delay, Doppler and gain domain, respectively [7]. The dimension of the distance matrix D is $C(k_t) \times C(k_t+1)$. It can be seen that the MCD allows to combine the parameters that come in different units. All further steps of the cluster tracking algorithm can be easily done by searching in D. Based on this distance matrix, it can be seen that the tracked cluster centroid for the new stationarity region $k_t + 1$ is only related to the cluster centroid at the stationarity region k_t. To track a cluster, the searching procedure in D works as [8]

- For each new centroid, the smallest value in each column of D is searched. The indices $c_{old}^*_{c_{new}}$ of this value identifies the closest old cluster. If $[D]_{c_{old}^*_{c_{new}}}$ is larger than a specified threshold ϵ, the cluster related to this new centroid would be treated as a new cluster with a new CLID.
- For each old centroid, the number of close new centroids smaller than ϵ in each row of D is counted. If the number is one, the cluster related to this old centroid is seen moving. If the number is more than one, the cluster related to this old centroid is treated as a moving cluster.
direction on a highway at around 75 km/h. The Tx drives in the left lane and a car drives by on the left lane. In addition, there is a truck in between Tx and Rx on the same lane, while the other truck is in front of Tx. For both scenarios, there are some traffic signs along the highway. Meanwhile, some vehicles drive in the opposite direction on the other lane of the highway.

We can observe that the unique CLID is assigned to a new cluster, while the moved cluster inherits the CLID from its predecessor. Based on this, we could analyze the cluster lifetime, which means how many stationarity regions the cluster exists. Note that clusters never re-appear after they vanished based on the cluster algorithm. It further means that the cluster lifetime ends when it vanishes.

III. MEASUREMENT DATA

The measurements used in the present work were collected in the DRIVEWAY’09 measurement campaign [9] conducted in Lund, Sweden. The channel impulse response is measured with a time resolution of $t_s = 307.2 \mu s$. The total time interval is $T = 10$ s. Therefore, there are $S = 32000$ snapshots in total. The carrier frequency is $f_c = 5.6$ GHz within a bandwidth of $B = 240$ MHz. Both Tx and Rx car are mounted with a linear array with four circular patch antennas perpendicular to the driving direction. The antennas cover the four main propagation directions due to their main lobes [10]. In order to achieve a 360° coverage in the azimuth plane, we consider to combine the antenna radiation pattern in this paper. We select two scenarios to analyze: (i) A truck obstructing line-of-sight (LOS) scenario, where the Tx and Rx drive in the same direction on a highway at around 75 km/h. The Tx drives in front. There is one truck in between Tx and Rx on the same lane and a car drives by on the left lane. In addition, there is a truck in the front of the Tx. A 2-D top view of this scenario is shown in Fig. 1(a). (ii) A LOS scenario shown in Fig. 1(b), where the Tx and Rx also drive in the same direction on a highway at around 90 km/h. One truck is driving on the left lane, while the other truck is in front of Tx. For both scenarios, there are some traffic signs along the highway. Meanwhile, some vehicles drive in the opposite direction on the other lane of the highway.

IV. SIMULATION RESULTS

We calculate the LSF from measurement data firstly, where $S = 32000$ snapshots are divided in stationarity regions towards the closest new one. In addition, we check each cluster among the other close ones whether it has been already counted as a new cluster. If yes, this cluster would use the same CLID as the found one. If not, the cluster is treated as a new cluster with a new CLID.

We can observe that the unique CLID is assigned to a new cluster, while the moved cluster inherits the CLID from its predecessor. Based on this, we could analyze the cluster lifetime, which means how many stationarity regions the cluster exists. Note that clusters never re-appear after they vanished based on the cluster algorithm. It further means that the cluster lifetime ends when it vanishes.

Fig. 1. 2-D top view of the measurements scenarios.

Fig. 2. An example of 2-D view of LSF and cluster identification at $k_t = 1$ and $k_t = 245$.

A. Analysis for LOS Obstruction Scenario

For the LOS obstruction scenario, there are 132 clusters detected over the total time interval. Fig. 3(a) plots the detected number of clusters per stationarity region. More clusters are detected during the second half of the measurement: 5 clusters are more often detected during the first half of the measurement, while 2 clusters are usually detected during the second half of the measurement. The tracked cluster lifetimes are shown in Fig. 3(b), where μ denotes the time corresponding to the stationarity region index c_t, and the length of the horizontal lines indicate the lifetime of the relevant CLID. It can be observed that many clusters only exit for one stationarity region, which can not be tracked. We mark the clusters who exist more than 15 stationarity regions, equivalent to 0.59 s, in Fig. 3(b). In total, there are 7 marked clusters. Without considering the longest and shortest lifetimes, the distribution of the probability density of cluster lifetimes obeys a lognormal distribution with its parameters $\mu = 1.46$ and $\sigma = 0.72$, shown in Fig. 3(c).

A 2-D view of the cluster centroids tracking for the LOS obstruction scenario is shown in Fig. 4, where we select the clusters who exist more than 15 stationarity regions, equivalent to 0.59 s. A close-up 3-D view of the relevant CLIDs is also included in Fig. 4. According to the geometrical information of measurements, we divide the clusters into three categories: (i) It can be analyzed that the detected cluster $c = 1$, which remains throughout the entire measurement run and contributes the highest gain level. Its Doppler shift is around 0 Hz. (ii) For the clusters $c \in \{5, 13, 53, 108\}$, the delay and Doppler shift values for each cluster change slowly during their cluster lifetimes, respectively. In addition, due to the negative Doppler shifts, we evaluate that the most feasible case is that these clusters come from the traffic signs and the big vehicles.
the LOS obstruction scenario, there are 6 clusters that remain for more than 15 stationarity regions in Fig. 5(b). Without considering the longest and shortest lifetimes, the distribution of the probability density of cluster lifetimes, shown in Fig. 5(c), also obeys a lognormal distribution with its parameters $\mu = 2.04$ and $\sigma = 1.05$.

The cluster centroids tracking for the LOS scenario is shown in Fig. 6. As for the LOS obstruction scenario, we select the clusters who exist more than 15 stationarity regions as well. Moreover, we can also observe three categories of clusters: (i) The cluster $c = 1$ is corresponding to the LOS component. Comparing the close-up 3-D view of the relevant CLIDs in Fig. 4 and Fig. 6, it can be seen that the contributed gain level by cluster $c = 1$ in the LOS scenario is higher than the one in the LOS obstruction scenario. (ii) For the clusters $c \in \{2, 3, 9, 12, 13, 24, 32, 39, 42, 44, 46\}$, their Doppler shifts are around 0 Hz, which means that the clusters have the same speed as the Rx vehicle or the direction of the propagation path is orthogonal to the driving direction of the Rx vehicle. Meanwhile, their delays are approximately constant during their existing time, respectively. It indicates that the propagation path length stays the same for each cluster. Thus, we think these clusters come from the truck driving on the left lane, the big moving vehicles on the left lane, a bridge under which the Rx crosses at around $t_{ik} = 1.5$ s, and the road signs where the Rx passing by is about $t_{ik} = 8$ s. (iii) For the cluster $c = 27$, its delays are approximately constant, while its Doppler shifts become larger during its lifetime. It mostly comes from a big moving vehicle driving on the left lane, whose speed is increasing.

V. C Onclusion

In this paper, we presented a joint cluster identification-and-tracking approach based on the LSF. We separated only the relevant MPCs from the Rx point of view based on the defined thresholds. Then the DBSCAN algorithm was used for the cluster identification. Furthermore, a low-complexity tracking algorithm relying on the MCD matrix was applied to track the cluster centroids. According to this approach, we
evaluated the time-varying cluster lifetimes for two scenarios of vehicular channel measurements: (i) LOS obstruction scenario and (ii) LOS scenario. For both scenarios, without considering the longest and shortest lifetimes, the distribution of the probability density of cluster lifetimes obeys the log-normal distribution. In addition, combining the geometrical information of measurements, we analyzed where the clusters come from. For both scenarios, the clusters can be divided into three categories according to the properties of the delays and Doppler shifts. It can be seen that besides the cluster related to the LOS component, the clusters detected from the traffic signs and moving big vehicles also remain for a long time period, while lots of clusters coming from discrete scatterers along the road exist only for a very short time. The cluster lifetime characterization for vehicular communication channels will help researchers to develop a simple and accurate vehicular channel model.

REFERENCES

