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Abstract—Widely distributed massive multiple input multiple
output (WD-MIMO) systems are promising candidates for future
mobile networks, given their improved energy efficiency, coverage
and throughput. To spatially separate the users, WD-MIMO
relies heavily on accurate and timely channel state information
(CSI), which is hard to obtain in high mobility scenarios. To
reduce the amount of pilot overhead necessary for obtaining
CSI, we investigate linear and machine learning (ML)-based CSI
prediction techniques and compare them in terms of achievable
spectral efficiency (SE). The considered methods are constant
continuation, Wiener prediction, dense, and long short term
memory (LSTM) neural networks (NNs). Real-world data from a
widely distributed massive MIMO channel measurement campaign
with various base station (BS) antenna array aperture sizes is
utilized for NN training and validation purposes. The capability
of the considered CSI prediction methods to mitigate the effects of
channel aging in realistic high-mobility scenarios is analyzed for
different geometries of the massive MIMO BS antenna arrays. We
can demonstrate a SE improvement of 2 bit/s/Hz for the LSTM
NN compared to a Wiener predictor.

Index Terms—AI/ML, CSI prediction, massive MIMO, widely
distributed, spectral efficiency (SE)

I. INTRODUCTION

While fifth generation (5G) wireless communication systems
are currently being deployed and in use world-wide, the search
for and evaluation of 6G candidate technology solutions already
started in the scientific community. One of the most promising
concepts is widely distributed (or cell-free) massive multiple
input multiple output (MIMO) systems [1]], which dissolves
the cellular network structure and follows a user-centric
approach, with different subsets of distributed base station (BS)
antennas (also called access points) serving different users in
an optimized and cooperative way. This approach offers several
advantages over conventional massive MIMO, such as (i) a
strong transmit energy reduction due to reduced distance to
the user equipment (UE), (ii) a consistent throughput over the
coverage area avoiding the strong throughput drop at cell edges,
and (iii) mitigation of large-scale fading [2].

For conventional and widely distributed massive MIMO
systems alike, accurate channel state information (CSI) at the
BS side is a key requirement to avoid degraded performance for

mobile users [3]] when operating in time division duplex (TDD)
mode. Hence, robust channel prediction algorithms, exploiting
the sounding reference signals (SRSs), are of strong interest
to avoid the expiration of the CSI. Moreover, these prediction
algorithms must be tested with real-world data to verify their
robustness.

The effects of outdated CSI on the spectral efficiency (SE)
of a communication system and mitigation strategies using
prediction are thoroughly investigated in, e.g., [4]-[7]]. However,
no real-world data is used in the analysis. There have been
many recent studies on high mobility users in massive MIMO
systems that utilize advanced prediction methods, such as
Kalman filtering [8]], [9] and machine learning (ML) [9], [10].
However, the methods are validated using only simulated data.

To the best of the authors knowledge, [11] shows the first
validation of a ML based CSI predictor using real-world
data. However, only one conventional collocated BS antenna
configuration is considered.

In this paper, we provide the following scientific contribu-
tions:

o We present two ML algorithms based on a dense neural
networks (NNs) and long short term memory (LSTM)
architecture for predicting the CSI from uplink data for
the downlink transmission.

e Training and testing is performed with CSI obtained
from the AIT distributed massive MIMO testbed with
32 antenna elements spread in different patterns over an
aperture of 46.5m.

o We present a comparison in terms of SE for linear predic-
tion algorithms and ML based methods, demonstrating a
SE improvement of 2 bit/s/Hz for the LSTM NN compared
to a Wiener predictor.

II. SIGNAL MODEL

The notation we use is largely based on [7]. We consider an
uplink massive MIMO system, where K users k € {1,..., K}
with single-antenna terminals send pilots and data to a BS
deploying A antenna elements a € {1,...,A}, without
neighboring cells. We assume an orthogonal frequency-division



multiplexing (OFDM) system where the individual subcarriers
q are orthogonal and are therefore treated individually. The
dependency on frequency is thus omitted in the considerations
below to facilitate notation.

The effects of the wireless channel on the scalar transmitted
information symbol sj ., at time index m are modelled by
a complex scalar channel coefficient hyj g ,,. The channel
coefficients of one user k to all A BS antennas are collected
in a channel vector

hi = [hk1m Pe2m - hiam ]T eCcM™ .
The channel matrix
H,, = [h1,, oy ... hgp) € CVF )

contains the individual channel vectors of all users. Similarly,
the beam-forming matrix

Wim ] c (CAXK

3)

contains the individual beam-forming vectors w,,, € CA*! for
user k and all A BS antenna elements.

The vector collecting the received symbols from all K users
at time index m is

Wm = [Wl,m Wom ---

$m=WHy, =WHH,s, + Whn,, 4

with s,,, € CE*! the vector collecting the transmitted infor-
mation symbols of all users, and WH n,,, ~ CA/ (O, "—PQIK)
denoting filtered complex Gaussian noise. P is the average
transmit power of each user.

The received symbol estimate from one single user & at the
BS

H H H
Skom = Wi m¥Ym = Wk:,mHmsm + Wi, mMm

H H Z H
= Wk,mhk,msk,’m + Wk:gmn’m + Wk7mhk',m5k:’7m 3
k'#k
Q)

where the first term in the second line is the scaled signal, the
second term is filtered and scaled Gaussian noise W,';'mnm ~

CN (O, ";), and the third term is interference from other users
k' # k.

A. Multi-Step CSI Prediction

It is shown theoretically, by simulation, and with measured
data in numerous papers (e.g., [4]], [7], [L1]], [12]]) that high
mobility of the users causes severe degradation of SE in massive
MIMO systems, often referred to as channel aging. It is caused
by the acquired CSI at the BS being outdated when it is used for
down-link beam-forming. To mitigate this effect, CSI prediction
is a proven approach [[13].

Given N consecutive pilot symbols and assuming perfect
channel estimation, we obtain the predicted channel vector
l~1k7m+1 with prediction horizon ¢ as

Wi = f (hgm—r) 6)

with f the prediction function and

hy

hy -1
] c (CAN><1 )

(N

hy e =

hy - N+1

stacking N consecutively received pilot.
We consider the following methods to predict the CSI in
this work:
e constant continuation, i.e., flk’mJ’,l =hy s,
¢ Wiener prediction as introduced in [7]] , and
o« ML approaches that will be detailed in Section
specifically:

— a small dense network with one hidden layer and
four nodes in total that serves as baseline algorithm,
and

— a more complex LSTM-based network.

For each of this methods, we evaluate the prediction quality
by evaluating the achievable SE.

B. Achievable Spectral Efficiency for Multiple Users

By introducing the predicted channel flka_l in H we
obtain the estimated received symbol from one single user &
at the BS after receive combining as

A H v H
Skymt1 = Wi g 1 Bk mp1Skm41 + Wiy ng1

H -
+ Wk,m+1(hk,m+1 —hy mt1)Sk,mt1

H
+ Z Wk,m+1h]€’,m+13k’,m+1 .
K%k

®)

The first term is the intended signal multiplied by the effective
channel gain

€))

the second term is additive noise, the third term is the channel
prediction error considered as noise, and the fourth term is
interference from other users k' # k.

The choice of the beam-forming vectors in W, greatly
affects the capability of a massive MIMO system to suppress
the interference from other users. In this work, we utilize
regularized zero-forcing (RZF) as a common choice of beam-
forming vectors [5]], [[14]:

g -
Veym+1 = Wi a1 D mt

W = [Wim Wom .. Wkm |

2 -1
=H, (ﬁzﬂm - "IK) , (10)
P
where the columns of the predicted channel matrix H,, are
composed of the predicted channel vectors similar to (2).
Considering the signal model (§) and assuming channel
prediction with prediction horizon ¢ at the BS, the instantaneous
signal power is given as the squared absolute value of the
effective channel gain vy, ,,,+1 and yields

2
9 -
Sk = "Yk,m+1| = ‘Wg,m+1hk,m+1‘ (11)



The instantaneous interference and noise power is defined as
the sum of all interference/noise contributions in (8)
2
g ~
H
I = —=Wi i hemir
VP
" . 2
+ ’Wk,m+1(h7€7m+l - hk7m+l>‘

H 2
+ E |Wk,m+1hk',m+1{ .
k'#k

(12)

The instantaneous signal to interference and noise ratio
(SINR) is defined as the ratio of the instantaneous signal to
interference and noise power

Sk

: (13)
I,

N0 =

Similar to [4], we define the uplink ergodic achievable SE
of user k£ with prediction horizon ¢ as

SEk’g =E {10g2 (1 + 7’]}67@)} R

where the expectation is over channel realizations.

(14)

III. CSI PREDICTION WITH NNS

In this section, we introduce two NN-based models for CSI
prediction of measured data to mitigate channel aging. For
both models, the input tensors consist of batches of dimension
N x A x 2@Q), where N is the number of consecutive pilot
symbols, A is the number of BS antennas, and () is the total
number of subcarriers considered. We split the pilot symbols in
real and imaginary part and append them in the last dimension
of the input tensor, hence its last dimension is 2Q).

A. Baseline Dense Algorithm

This model is chosen in the most simplistic form to serve
as a baseline for other CSI prediction methods. It consists
of a reshaping layer to manipulate the dimensions of the
input tensor to fit the subsequent dense layer. The dense
layer consists of only /N fully connected nodes and comprises
the only trainable parameters in the model. The following
reshaping layer serves the purpose of restoring the output tensor
dimensions to match the input dimensions. Note that each of
the A antenna samples is processed individually, therefore

correlation among BS antennas can inherently not be exploited.

Figure [T] shows the architecture of the baseline algorithm.

A x2Q
i Reshape
Ij Dense
Activation = linear
) Reshape
Nx Ax2Q

Fig. 1: Baseline dense model architecture. The dense layer is comprised of
only N nodes, resulting in a total of N(N + 1) trainable parameters.

B. LSTM Algorithm

The proposed model architecture is common in video frame
prediction and is repurposed here to serve as CSI prediction
that uses “frames” of dimension A x 2@). With this approach,
spatial correlation among BS antennas can be exploited. A
sequence of three convolutional LSTM layers is followed by a
max-pooling layer with pool size 1 x 3. After flattening, a dense
layer with 2N AQ nodes and subsequent reshaping comprises
the last processing steps. Figure [2] shows the architecture of
the LSTM algorithm.

A x2Q

ConvLSTM
Filters = 8,
Kernel size = (3, 10),
Activation = tanh

ConvLSTM
Filters = 4,
Kernel size = (2, 10),
Activation = tanh

ConvLSTM
Filters = 2,
Kernel size = (2, 10),
Activation = tanh

MaxPool2D
AXQQ/g Pool size = (1, 3),
Flatten
2AQ 3 Dense
Activation = linear
. Reshape
Nx A x2Q

Fig. 2: LSTM model architecture with the total number of trainable
parameters O(2NAQ(4AQ/3 + 1)) largely determined by the dense layer.

C. Training and Testing

For each BS configuration, 75% of data points in time are
utilized for training purposes, while 25% are used for testing.
Table [[| shows the average duration of training and inference of
the proposed models on the CPU of a standard laptop, as well
as their number of trainable parameters. The inference times
of the constant continuation and Wiener prediction methods
are included for comparison.

The training and inference times in Table |If are obtained for
the values N = 4, A = 32, and @ = 20, which are used in
the remainder of this paper. For those parameters, the exact
number of trainable parameters is 20 (baseline dense NN) and
4278456 (LSTM).



TABLE I: Average training and inference duration on the CPU of a standard
laptop, as well as the number of trainable parameters where applicable.

Epochs Train. [s] Inf. [s] param.
baseline 200 430 0.1 N(N +1)
LSTM 30 23100 7 O(2NAQ(4AQ/3+ 1))
constant - - 0.04 -

Wiener - - 0.3 -

IV. SCENARIO DESCRIPTION AND MEASUREMENT
FRAMEWORK

We conducted a widely distributed massive MIMO vehicle
to infrastructure (V2I) channel sounding campaign in March
2022 at the premises of AIT in Vienna, Austria (48.269 080°N,
16.427 637°E). In this campaign, three different array geome-
tries with apertures ranging from 2m to 46.5 m were installed
and tested. Further details of the measurement campaign can
be found in [12].

A. Measurement Scenario

Widely distributed and cell-free massive MIMO systems
are envisioned to be deployed in urban environments, as they
potentially mitigate the burden of large-scale fading, i.e., block-
ing by buildings, vegetation, or cars. The widely distributed
massive MIMO channel sounding campaign is designed to
capture these urban channel characteristics, including mobility,
multipath propagation, blocking and transition from line of
sight (LOS) to non line of sight (NLOS).

Two UE antennas are mounted on the roof of a van. They
are referenced in the following as UE 1 and UE 2, respectively.
Both UEs are following a fixed trajectory for all measurements,
with velocities ranging from 15km/h to 60km/h. Figure
shows a top view of the scenario under consideration, with the
UE trajectory indicated in blue. The starting position of the
UE is marked with a white van icon.
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Fig. 3: Top view of the urban scenario of the measurement campaign. The
UE trajectory is indicated in blue. The BS antenna array is located on the
roof of an office building and indicated in green. The individual BS antennas
are facing a large office building to the north, dividing the UE trajectory into
LOS and NLOS regions, indicated by gray shadows.

On the BS side, 32 array elements consisting of single patch
antennas are positioned on the roof top of an office building
at a height of 15m as a horizontal linear array, with vertical
polarization and their individual main lobe facing north. The
BS antennas are receiving the signal transmitted by the UE.
The green area in Fig. 3] shows the position of the BS array.
Since there is an office building of similar height to the north
of the linear BS antenna array (in the directions the individual
patch antenna array elements are pointing to), parts of the UE
trajectory are exhibiting NLOS conditions. The measurements
are conducted at a carrier frequency f. = 3.2 GHz, i.e., with
a wavelength of A = ¢¢/ f. = 9.38 cm.

Three different linear horizontal BS array configurations are
implemented, with significant variation in the array aperture
and antenna element spacing. Figure [3| shows in green the
position where all three array configurations are located. The
exact positioning and spacing of the patch antenna elements
for each BS array configuration is detailed in Fig. ] (from
[12])). Photos of the three different BS antenna array setups on
top of the AIT office building are shown in Fig. [3]

BS conf. 1:
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| 0.64X

Antenna 32 ... Antenna 01
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Fig. 4: 32 BS antennas assembled in one of three BS array configurations
with total aperture sizes ranging from 2m to 46.5 m.

V. RESULTS

We utilize the CSI data obtained in the measurement
campaign outlined in Section[[V]to construct the channel matrix
according to (2). Subsequently, we perform CSI prediction
according to the methods outlined in Section [[I-A] (constant
continuation and Wiener prediction) and Section @ (dense
NN and LSTM NN). The predicted CSI (§) is then used to
calculate the ergodic achievable SE using (T4).

The CSI is acquired and predicted with a sampling rate of
T, = 1ms, i.e., a prediction horizon of ¢ = 3 corresponds
to predicting (¢ 4+ 1)Ts = 4ms into the future. The temporal
correlation of the fading process for the Wiener filter are
assumed stationary for the whole test data-set. For the temporal
correlation, a rectangular Doppler spectrum is assumed to
obtain a robust predictor, see also [I5]. The spectral support
in this paper is determined by maximizing the SE with an
exhaustive search over the maximum Doppler frequency. We




(c) BS conf. 3 with 32 equispaced patch antennas over an aperture of 46.5 m.

Fig. 5: BS configurations with apertures ranging from 2m to 46.5 m.

chose a maximum Doppler frequency of vp = 30 Hz, which
corresponds to a relative velocity of the users of 10km/h.
Utilizing a bathtub-like Doppler spectrum according to a
Clarke’s model does not yield any improvements compared
to the rectangular spectrum. No spatial correlation is assumed
between antennas.

A. Spectral Efficiency

In Fig. |§|, we show SEj . as defined in versus the

prediction horizon ¢. We use N = 4 pilot symbols, BS conf.
1 and compare all considered channel prediction methods.

The constant continuation, i.e., utilizing the last known CSI
value for beam-forming, yields low SE and is not suitable for
high mobility scenarios. The baseline dense NN algorithm
works astonishingly well for low prediction horizons and

yields comparable SE values to the Wiener prediction method.

The LSTM approach, however, clearly outperforms the other
considered methods and improves the SE by about 2 bit/s/Hz
even for high prediction horizons. For ¢ = 3 and using the
LSTM approach, the SE is 4.47 bit/s/Hz, which is almost
four times more than the constant continuation approach
(1.32bit/s/Hz) and a 160% increase over the Wiener predictor
(2.79bit/s/Hz).

.. Q-- constant cont. - x - baseline —s#— LSTM =--¢ -- Wiener

SE)c N4 [bit/S/HZ]

Fig. 6: SEj, ¢ over prediction horizon £, when using the BS conf. 1 data set
for training and testing.

In Fig. |7 we show the results for BS conf. 2, where we
increased the spatial diversity separating two antenna groups
by about 45 m. The basic behaviour is similar to the results
in Fig. [6l However, the LTSM algorithm shows a small
improvement by about 10% in Fig. [7]

’ -+ Q- constant cont. - x- baseline —— LSTM --¢--- Wiener

SE [bit/s/Hz]

[\

Fig. 7: SEy, ¢ over prediction horizon £, when using the BS conf. 2 data set
for training and testing.

Finally, in Fig. [§] we show the results for the 32 widely
distributed antenna elements over an aperture of 46.5m and
a spacing of 1.5 m between the antenna elements. Again, the
LSTM-based NN is able to accurately predict the CSI. However,
the baseline dense NN is considerably worse than for BS conf.
1 and 2. This can be attributed to the fact that there is a great
variety in channel realizations for BS conf. 3 that cannot be
reproduced by the small number of nodes in the baseline dense
NN.

B. Testing with Different BS Conf. Data Sets

We tested the SE performance of the considered NNs with
the respective BS configuration data sets that have not been used
for training to evaluate their capability to handle new channel
realization data and evaluate their reliance on correlation among
BS antennas. Table [[I] list the corresponding results for a
prediction horizon ¢ = 1.

For the baseline dense NN, we notice similar SE for all
test data sets, regardless of the training BS configuration. For
the LSTM-based NN, we notice a significant drop in SE of
approximately 25% when training with either BS conf. 1 or
2 and testing with BS conf. 3. However, when training with
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Fig. 8: SEy, , over prediction horizon ¢, when using the BS conf. 3 data set
for training and testing.
TABLE II: SE for prediction horizon £ = 1 and all combinations of BS
antenna configurations as training and test data.

Test data set

SE [bit/s/Hz]

BS conf. I BS conf. 2  BS conf. 3
constant continuation 2.96 3.08 2.94
Wiener predictor 491 5.03 4.95
baseline dense NN
Training data set:
BS conf. 1 5.10 4.83 4.90
BS conf. 2 4.89 4.77 4.70
BS conf. 3 4.19 3.95 4.05
LSTM NN
Training data set:
BS conf. 1 6.75 5.45 5.08
BS conf. 2 5.86 7.04 5.20
BS conf. 3 6.55 6.56 7.07

BS conf. 3, the SE for all test data sets stays almost constant.

We conclude that that the great variety of observed channel
realizations in the widely distributed BS conf. 3 data set is
beneficial for LSTM training purposes. Moreover, correlation
among BS antennas is either not leveraged by the NNs or does
not play a significant role in this specific case, as it is shown
in [12] that BS conf. 3 hardly shows spatial correlation.

VI. CONCLUSION

We introduced a simple dense NN and a more complex
LSTM-based method to perform CSI prediction on real-world
cell-free (widely distributed) massive MIMO CSI data. We
evaluated the NN predictors in terms of achievable SE and
compared them to two standard approaches, namely constant
continuation and Wiener prediction. The LSTM-based NN
shows superior prediction quality, with an increase in SE of

160% over the Wiener filter for a prediction horizon of 4 ms.

Further, we show that a widely distributed BS antenna setup
yields favorable trainig data due to the large channel realization
variety. Spatial BS antenna correlation does not significantly
contribute to the prediction quality.
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