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Abstract—Receive antenna selection (AS) has been shown toorthogonal frequency division multiple access (OFDMA) as
maintain the diversity benefits of multiple antennas while pten-  signalling formats over the physical channel. Further, AS a

tially reducing hardware costs. However, the promised divesity - yha transmitter and/or receiver has been standardized.ie.g
gains of receive AS depend on the assumptions of perfect chael IEEE 802.11 is bei tandardized I3 '
knowledge at the receiver and slowly time-varying fading. B -11n, or is being standardized [3].

explicitly accounting for practical constraints imposed ty the Antenna selection may be used to reduce hardware com-
next-generation wireless standards such as training, paetization plexity at the transmitter and/or receiver of a wirelesseys

and antenna switching time, we propose a single receive AS :
method for time-varying fading channels. The method explds In AS, only a subset of the antenna elements (AEs) is

the low training overhead and accuracy possible from the usef ~connected to a limited number of radio-frequency (RF) chain
discrete prolate spheroidal (DPS) sequences based reducexhk  based on the current channel fades. This potentially ®tain
subspace projection techniques. It only requires knowledg of the advantages of multiple antennas, despite using fewer of
the Doppler bandwidth, and does not require detailed correhtion  the expensive RF chains that are comprised of low-noise

knowledge. Closed-form expressions for the channel predion s : :
and estimation error as well as symbol error probability (SEP) amplifiers (LNAs), mixers, and oscillators [4], [5]. We fazu

of Mary phase-shift keying (VPSK) for symbol-by-symbol receive here_ on the practical ;ingl_e receive_ AS scena_lrio because it
AS are also derived. It is shown that the proposed AS scheme, retains most of the diversity benefits of multiple antennas
after accounting for the practical limitations mentioned above, while minimizing hardware complexity. As will be shown,

outperforms the .ideal conventional single-input singlg-utput performance evaluation of even the single AS problem is very
(SISO) system with perfect CSI and no AS at the receiver and

AS with conventional estimation based on complex exponerai challenging. o ) .

basis functions. There are a number of existing studies on both optimal and
Index Terms—Antenna selection, time-varying fading, discrete SL..lbop_timaI AS glgori.thms [6_]' [7]. as well as on the capacity,

prolate spheroidal sequences, Slepian basis expansion. diversity, and diversity-multiplexing (D-M) performanaef

AS [8]-[13]. However, to date, far fewer studies exist that
deal with the practical issues of pilot-based training arfsl A

implementation. A media-access-control (MAC) based AS

T O accommodate the rate and reliability requirements $glining and calibration protocol, in which the AEs are s
by forthcoming applications such as wireless broadbagding packets transmitted in burst mode is proposed in [14]
access and mobile television, next-generation wireleas- st slowly time-varying environments. The protocol in [14]

dards such as I[EEE 802.11n [1] and long term evolution (LTEJ 54onted in the IEEE 802.11n standard for high-throughput
of the third generation partnership project (3GPP) [2] haygi ajess local area networks (WLANS).
adopted multiple-input multiple-output (MIMO) technolgg

orthogonal frequency division multiplexing (OFDM) and/ora

|. INTRODUCTION

In the above references, perfect channel knowledge is
ssumed. However, the mobile communication environment
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over flat Rayleigh fading with imperfect channel knowledge In this paper, we propose and analyze the performance of
is developed in [17]. Receive AS for space-time-frequeney training-based single receive AS system in time-varying

(STF) coded MIMO-OFDM systems with imperfect channathannels that uses the Slepian basis expansion prediador an
estimation is studied in [18]. The effects of feedback delagstimator. The paper’s contributions are summarized as fol

and channel estimation errors on the performance of a MIMOws:

system employing AS at the transmitter and maximal ratio, A method for accurately estimating/predicting time-
combining (MRC) at the receiver is studied in [19]. In [19], varying frequency-flat channels, which utilizes projec-
it is shown that channel estimation errors result in a fixed tons onto a subspace spanned by orthonormal DPS
signal-to-noise ratio (SNR) loss while feedback delayralte sequences [22], [23], is extended to AS.

the diversity order. _ _ « Closed-form expressions are provided for the channel
Motivated by the fact that AE channel gain estimates prediction and estimation error as well as the SEP of

are outdated by different amounts in time-varying channels  \psk with receive AS. and verified with Monte Carlo

a single-antenna selection rule is proposed in [20] which  gjmulation results.

minimizes the SEP oftary PSK (\PSK)MOAM by linearly — , Extensive simulation results are presented to compare

yve_lghtlng the channel estimates _before selectlon._ In [20], the performance of the proposed AS method with ideal

it is shown that the optimal weights are proportional 10 conventional single-input single-output (SISO) systems

the temporal channel correlation coefficients of the ardsnn with perfect CSI but no AS at the receiver and AS

The general case of selecting more than one antenna and pased on prediction/estimation techniques that are based

the problem oftraining voids have been recently treated 4 complex exponential basis functions.

in [21]. However, it is worth mentioning that only channel

gain estimates obtained during tA8 training phase are used The paper is organized as follows: the detailed system

odel is described in Sec. I, and the Slepian basis expansio

in the selection and decoding mechanisms in [20] and [2 ) . . .
since channel gain estimates over tiaga transmission phase predictor and estimator are then introduced in Sec. Ill. The
raining-based receive AS method is described in Sec. IV.

are not available, which incurs a loss in SNR. We also no. ) ] . . .
. . o . e SEP is analyzed in Sec. V. Analytical and simulation
that the weighted selection criterion used in [20] and [21 . . . .
results are discussed in Sec. VI. Our conclusions follow in

requires temporal correlation knowledge. . . R . .
9 P : . cdge. . Sec. VII. Detailed mathematical derivations are provided i
The above observations motivate investigation into pcatti the Appendix

training-based AS algorithms for time-varying channelsolth
use channel knowledge in the data transmission phase in
the selection and decoding processes by utilizing channel 1. SYSTEM MODEL

prediction. It is important to highlight that the optimal &dier ) , . -
predictor utilizes detailed covariance knowledge, whish i Consider the downlink of a cellular radio system consisting

difficult to obtain due to bursty transmission, or over th8' @ Single-antenna base station (BS) transmitting t&'a
short time interval in which the channel is wide-sense st3énnaelement (AE) mobile station (MS) equipped with only
tionary in vehicular scenarios [22]. This motivates the ake one RF chain as depicted in Fig. 1. A micro-electromechdnica
the recently-proposed low-complexity Slepian basis esjzan system (MEMS) based antenna switch connects the selected

channel estimator [23] and channel predictor [22] to obtaffE t© the RF chain; such switches provide sufficient switghin
reliable CSI at the receiver. This Slepian basis expansioR€€ds while keeping the insertion loss in the order. biB,
estimator/predictor uses discrete prolate spheroidalsjppVNich is negligible. o

sequences as basis functions which enables low-complexit2ch AS cycle consists of ahS training phase followed
reduced-rank channel estimation/prediction. Furtheeman PY @data transmission phase, as illustrated in Fig. 2. We first
contrast to many linear estimation/prediction techniqueeg INtroduce DPS sequences which are used to predict/estimate
require detailed autocorrelation knowledge, it requiredyo the time-varying channel over the data transmission phase a
knowledge of the Doppler bandwidth. In [23], the SIepiaﬁhOW” in _Sec. [ll, and then describe the AS training and data
basis expansion channel estimator is used to estimate ffgSmission phases.

time-varying channel for each subcarrier of a multiusertimul
carrier code division multiple access (MC-CDMA) system - .
It is shown that with a pilot-to-packet length ratio of onIyA' Discrete Prolate Spheroidal (DPS) Sequences

2%, the bit error rate (BER) of the system approaches thatThe orthogonal DPS sequences are simultaneously band-
of a system with perfect CSI. It is shown in [22] that for dimited to the frequency rang@V = (—Vmax +Vmax)
prediction horizon of one eighth of a wavelength, the Skepi@nd energy-concentrated in the time interva =
basis expansion channel predictor outperforms the chissi€0,1,..., M’ — 1}, where the normalized one-sided Doppler
predictor that uses complex exponentials as the basis. Wandwidthvmax is given by

note that the complex exponential predictor utilizes thacéx A Oma 1

Doppler frequencies of each propagation path of the channel Vmax = —IC Ty < = Q)

For a prediction horizon of three eighths of a wavelength, th 2

performance of the Slepian basis expansion channel peedisthere vmax is the radial component of the user velociffy,

is shown to be very close to that of the optimal Wiends the carrier frequency, andis the speed of light. Thé/’
predictor. DPS sequencegu, [m] |m € Z}l-]\io_1 are defined as the real
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AE 1 -
AE 1 ) ) Consecutive (KxL) -
i i AS training pilots (N-L ) data symbols with
Data j Moclj)tle AE K 1 out Data L interleaved pilots
source La 10 N C| ofK —— sink T
(BS) pchannet. % © | switch (MS) —
K—> .
T. Time m
Fig. 1. Antenna selection system model To Uil
g = y ' AE 2 Time m

Data transmission phase

AS training phase

solutions to the following system of linear equations [23] Selection

&
M'—1 Switching
S Cll=mluill] = Xui[m], mE 7, i € Ty
(2) Fig. 2. Antenna selection cycle consists of AS training aathdransmission
where phases. (AEL is selected K =2, L =2, L' =2, andT, = 2T5).
Cll—m] = sin (27r1/;nax(l - m)) 3)
m(l—m) data symbols are drawn with equal probability fromMPSK
The eigenvalueg\;} - , | decay exponentially foi > D', constellation of average energy = 1.
where the essential subspace dimendiris given by [23] Let m index discrete time with sampling rafes = . The
, , channel gainh [m] is estimated from the AS tra|n|ng pilot
D' = [2vmax M| +1 (4)  symbolpy, [m] that is received by AE: at timem € T}. The
and [z] denotes the smallest integer greater than or equalrﬁfe'ved signal is
T yk [m] = hg [m] pr. [m] + ni [m], 1<k<K, meTF
As mentioned  earlier,  the DPS  sequences (6)

{u; [m] |mez}£‘i,0’1 are orthogonal. Further, evenwhere
the restrictions of the DPS sequences dh, i.e.,

{ui[m] |m € Tn},L, ", are orthonormal [23] and, thus,
form a set of M’-length basis vectors{uz} o ~1. Based denotes the set of time indices when theAS training pilots

on (2), the lengthd/’ basis vectors{uz}izo ! are, thus, the are received by AEk, hy [m] is the sampled time-varying

TeS{alk-D)+K (-1}, 1<<L (7

eigenvectors of tha!’ x M’ matrix C [23] channel gain, andqy, [m] is additive white Gaussian noise
(AWGN) with variance Ny and is independent of, [m].

Cu; = X\iu (5) Based on (6), channel gain estimat{a&,C [m] |m € Tt’f} for

where M’ x 1 basis vector wu; £ AE k can be expressed as
T . . ~

[wi [0]wi 1], oyug (MY = 1] with ()" denoting the iy m] = yx[m] pj[m)
transpose. The entries o€ are formed from (3) as A N X
[C),,, = C[l —m] for I, m € Zy. As shown in Sec. IlI-A, = helm+ep[m], 1<k<K, meTy (8

the DPS sequences time-limited tﬁm, which form an JAN

W where (-)" denotes complex conjugate anef [m] =
orthonormal set of basis functiods;},—, *, can be used to ,, ;)] pr[1m] is the channel estimation error resulting from
estimate the time-varying channel O‘EH the AWGN. From (7) and accounting for the additional

selection and switching time of duratidf}, — T, it follows
B. AS Training Phase that the AS training phase spans the discrete time interval

In eachAStraining phase, the BS transmitd, > 2 training =1{0,1,...,M — 1}, whereM = a K L.
symbols sequentially in time to each antenna. We note hereUS'r‘g the noisy channel esumat%ﬁk[ ] me Tt’rc} the
that more than one pilot symbol is needed in order to emplégceiver performs minimum-energy (ME) band-limited chan-
AS in time-varying channels to improve channel predictiomél prediction [22] for each antenna over tea transmission
Pilot symbols are used to estimate the predictor's basiarexpphase time interval Zge = {M,M +1,...,M + N —1}.
sion coefficients as discussed in Sec. Ill. We also note Heat Denote the predicted channel gains %ﬁﬁp[m] |m e Idt},

3GPP-LTE standard uses two fraining symbols within a 1 mMg,q e the superscrigt)S” indicates Slepian prediction [22].
duration to improve channel estimation. The duratlon betwe-l-he MS selects its receive antenna according to a certain

consecutive pilots for A and AEk +1 is Ty = a T, where criterion, and then switches its RF chain accordingly.

Ts is the symbol duration and > 2. Two consecutive AS  pepending on the AS switching time, either per-packet or
training pilots transm|tted for each AE are thus separated dymbol-by-symbol AS can be used. For example, solid-state
time by a duration otTt KT, = a K Ts. The pilot and data switches achieve switching times on the order of hundreds
symbol duration7s is assumed to be much longer than thef nanoseconds, which is less than typical cyclic prefixes,
delay spread and much shorter than the coherence time of éinel thus enable the switching of antennas between symbols.
channel, i.e., the channel is frequency-flat time-varyiflge Thus, different symbols of a packet may be received by their
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most suitable AEs as the channel varies with time. Howevehannel over time intervall,. The basis expansion esti-
these switches have attenuations on the order tf 3 dB. mator approximates thé/’ x 1 true channel vectoh é

In contrast, MEMS switches have attenuations on the ordgfo) 4 [1],..., h[M' — 1HT in terms of a linear combina-
of 0.1 to 0.3 dB, but achieve switching times on the ordeF{

~ SE ’ H D—1
of microseconds, and thus typically enable only per-packé(fn h-of D length-M" basis vectordu;};, as [22]

switching. We note as the AS switching times and attenuation D

decrease, symbol-by-symbol switching may become viable in h~h =U#4= Z i Ui (14)
futuristic systems. Furthermore, similar to 802.11n, packet i=0

switching can be enabled by modifications of the MAC layer, _ _ A
while per-symbol switching requires changes to the physicd hereU = [wo,...,up-1] is an M’ x D matrix, u; =
layer standard. Therefore, both symbol-by-symbol and pe: [0],u; [1] ..., u; [M’ - 1]} and D is the optimal sub-

packet switching are relevant, and are both considerediin Gpace _dimensmn which mmlmizes the mean-square-error
analysis. We denote by the index of the selected antenna(MSE) in the above approximation. It is given by

with (%) indicating that the selection is based on (imperfect) J-1
prediction and/or estimation. D = argmin 1 Z N+ d No (15)
de{1,....J} 2 VmaxJ Py J
C. Data Transmission Phase 5
hd . h h q | h heren =& is the average SNR. In (15), the eigenvalues
In eachdata transmission phase the BS sends out a length-, .o assumed to be ranked &§ > Ay > ... > A;_;. The
N data packet, which consists 6f — I’ data symbols and/’ Dx1 ‘ N T tains the basi
interleaved post-selection pilot symbols. The symbol tioces x 1 vectory = [70’ y1,---4p-1]  contains the basis

expansion coefficients. It is estimated using thanterleaved

in th ket that the pilot iven by [23 ; : . .
in the packet that carry the pilots are given by [23] pilot symbols{p[l] |l € J}, received at time € 7, via [23]

A N N
P_H(é’—l) + J 1§£’§L’} 9) . _ . .
Ayl UL Fall (16)
where|z| denotes the largest integer not greater thaAfter e
selection, the pilots are received by AEat timesm € Ty, wherey [l] is the received signal, th® x 1 vector f [I] is
where defined asfuo [I], ..., up_1 [ZHT, andG is aD x D matrix
iven b
Tdté{M—HW—nN, NJ\lgf'gL'} gen by T
Lzl (10) G=> s (17)
leg
and M = o K L. Thus, in total, Lt 27 + L’ pilot symbols ; N
are received by AE at timesm € T{,, where where(-)" denotes Hermitian transpose.
Tt =Ty U T (11)

B. Minimum-Energy Band-Limited Channel Prediction
with T and Ty given in (7) and (10), respecuvely From these

Liot pilots, refined channel gain estimay 2-lm] | m € Idti DPS sequences that are time-limitedZfpas the basis vectors.
of the selected AE: are obtained using the Slepian basighey are calculated by [22]

expansion channel estimator [23] and used to decode data.

The ME band-limited predictor uses the extension of the

The received signal at AE can be expressed as M1
u; [m] A ZC wil], meZ\Ty. (18)
yi [m] = h; [m] s[m] +n; [m], meZy (12)
where the transmitted symbselm] is given by The ME band-limited prediction of a time-varying frequency
flat channel can be expressed as [22]
s[m] = { d[m], m € Za\Tu _ (13)
plm], m e Ty

EPIm] = fT m] 4 =Y Aui[m], mez\Iy (19)
Here, d [m] and p [m] denote the transmitted data and post- ] b Z ] \

selection pilot symbols, respectively.

T
where f [m] = [ug[m], ..., up—1[m]]".
IIl. REDUCED-RANK CHANNEL ESTIMATION AND
MINIMUM -ENERGY BAND-LIMITED PREDICTION IV. DOWNLINK RECEIVE ANTENNA SELECTION
A. Reduced-Rank Channel Estimation ALGORITHM

To enable estimation of a time-varying channel for a length- We propose the following training-based “one out igf
M’ block of data transmission\/’ — J data symbols and’ receive AS algorithm for time-varying channels for pergetc
interleaved pilot symbols are transmitted in a pattern ifieeic  Switching:
by index set7. 1) Following an AS request, each AE is trained using:
The aforementioned DPS sequences time-limitedo= 2 pilot symbols. The spacing between consecutive AS
{0,1,..., M’ — 1} are used to estimate the time-varying training pilots transmitted for each AE 1§ = o K Ts.
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To keep theAS training phase as short as possible, is
chosen as T
sSw
=|—= 1
=[]
whereTy, is the antenna switching time.

(20)

2) On receiving these AS training pilots, the receiver then:

converted into a symbol-by-symbol receive AS algorithm as
follows: (i) In Step 2(c) the receiver then selects its reeei
AE, i,,, for the data symbol at time: according to
~ 2
|5l (24)

Iy = argmax
1<k<K

a) Obtains the preliminary channel gain estimate®® denote this alternative AS strategy, symbol indexhas

hy [m] |m € Tt’f} using (8).

b) Performs channel prediction for each AE over th

data time intervalZy via (19)
R D—1
hEPim) = £7 [m] 4y, = Y Awiui[m]  (21)
1=0

wherel < k < K, m € Iy, and D is calculated
from (15) (with L replacingJ). Slepian prediction
sequences{u; [m] |m € Idt}izgl are calculated

JUEVANRN SN ~ N .
from (18), andy, = [Yk.0, k.1, --» k01| IS

been added toin (24). (ii) In Step 3 the BS sends out a length-
N data packet which consists &f — KL’ data symbols plus

& L' pilots for theK AEs. Note that no AS is employed during
the transmission of th& L’ pilots. Thus, in totalLis = L +

L' pilot symbols are received by each AE. From thdsg
pilots, refined channel gain estimat%ézsi [m]|m e Idtj are
obtained using the Slepian basis estimator and used to decod
data. To reduce overhedd can be set td.

V. SYMBOL ERRORPROBABILITY (SEP) ANALYSIS
In this section, we analyze the proposed receive AS al-

of size D x 1 and contains the basis expanSio'(?,]orithm from Section IV as well as the symbol-by-symbol

coefficients for AEL which are estimated via (16)
(with T}¥ replacing.7).

Selects its receive AEwhich maximizes the post-
processing SNR over the data time interZa|,
which consists ofV symbol durations, as

M+N-—-1 R 2
> |agm]
m=M

3) The single-antenna BS then sends out a ledgttata
packet which consists oV — L’ data symbols plug’

(22)

[ = argmax
1<k<K

receive AS, to evaluate the SEP BPSK in time-varying
channels.

A. Prediction and Estimation CS Models

To derive closed-form expressions for the variances of the
predicted/estimated channel gains and prediction/egtma
errors, we first define the CSI uncertainty model for Slepian
basis expansion estimation as

hE[m] = hy [m] + epE[m], 1<k <K, m €Iy (25)

post-selection pilot symbols interleaved according to (9)

Using the Lt = L + L’ pilots, refined channel gain
estimates{szSE [m] |m € Idt} are obtained by

D—-1
he =U'%, =Y A (23)

1=0
where the N x 1 vector h, =
~ ~ ~ T .
[WSE[M],ASE[M +1],...,hE[M + N —1]] ", D is

obtained from (15)with Ly replacing.J), the D x 1
. A . . T . . .
vector 4; = [4:0,---,9:,0-1] contains AE{ basis

expansion coefficients which are estimated using (1

(with T, replacing 7), U = |uf,...,up_4]
is the N x D submatrix of the complete
(M + N) x D DPS sequences matri&. The vector
w) 2 [ug (M), [M+1],. s [M 4+ N —1]]7 is of
size N x 1.

where h$E[m] is the estimated channel gaihy. [m] is the
true channel gain, andst[m] is the estimation error. We
assume the variablés, [m] ande;E [m] are uncorrelated. The
true channel gaifi;, [m] is modeled as a zero-mean circularly
symmetric complex Gaussian random variable (RV) with unit-
variance. The true channel gain is correlated over time.
From (25), the variance of the channel gain estinfz:—ﬁé[m]
can be expressed as

Opse [m] = o7, [m] + 0% [m] =1+ MSE"[m]  (26)
ereMSEZE[m] is the MSE per sample for the Slepian basis

expansion estimator of AE.

The MSE per sample of the Slepian basis expansion estimator

for AE k takes the form [22]

[m] @7)

2
MSEFE [m] = (bias%E [m]) + varyE

We note that while other selection criteria may alterndgivewhere bias;- [m] and var$®[m] are the bias and variance
be used [20]; we consider the maximum total post-processii@ms, respectively. In (27), the squared bias term can be

SNR criterion in (22).

Remark: In symbol-by-symbol AS, for each symbol an
AE is selected. Since different AEs might be selected during

the data transmission phasg; L’ pilots should be sent

expressed as [22]

(bias‘ZE [m])2 = /ti EXE[m,v] Sy (v) dv  (28)

to each AE in the data transmission phase so that refingflere s, (v) is the power spectral density (PSD) of the time-
channel gain estimates can be obtained for each AE. ThUérying channefh [m]}, and ESE [m, 1] is the instantaneous

the number of pilots is nowX'L’. Note that we still have
Tg={M,M +1,...,M + N — 1} since the switching time
is less than the symbol duration. The above algorithm

error characteristic given by

is EE[m,v] = |1— GSE[m, V”Q. (29)
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Here, the
G3E[m,v] is given by
GRElm, v = 1 m] G' Y F (1] exp (—j2mv (m —1)).
Le T
(30)
In (27), var$¥[m] can be well approximated by [23]
vargt [m] = No £ [m] Gi* f [m]. (31)

SE
The CSI model for the Slepian basis expansion predictor cfereb™ [m]

be obtained from (25)—(31) by replacing supersctipt® by
(-)°" and T35, by TiF in (30).

B. SEP Analysis

1) SEP of Per-Packet Basis Selection: We now analyze the
SEP of anvPSK symbol received at time of a system which

employs the per-packet basis receive AS algorithm in Sec. IV

K
Note that the predicted channel gai{v%ip[m] |m € Ty
are used to select AEto receive the lengthy data palf:Etlat,
while the estimated channel geihL%E [m] is used to decode the
received symbol at timen. The maximum-likelihood (ML)
soft estimate for the symbol received by At timem can
be expressed as

refml = (hSE(m]) " g fm)

hSE [m]]2 d[m] — (h§

+ (RSEm]) " ne ml

(32)

where the last equality follows from substitution of (12)3],
and (25). Conditioned ohSE[m] andd [m], r; [m] in (32) is
a complex Gaussian RV whose conditional mean[m] and
variances? [m], as shown in the Appendix, are given by

pr, ] & E{rs m] | A¥m]  d ]}
= [hsEp| ) ) 39)
o2 m] & var{r;[m] |A$Em],d[m]}
= [l mll? (1 - =)
N ﬁ?E[m]f (34)

where E{-} and var {-} denote statistical expectation andy/

A

1 _ 1
1+05§E[m] - 1+MSE§[E[m]’

and the other symbols are defined in (13) and (26).
- . MyN-1) K .

Conditioned on{{hﬁp[m]} ; } , i, and hE[m],

the SEP of an MPSK symbol relf::e}ved at timem

SER, <{{E§P[m]}M+N_1}K

variance, respectively;>E[m)]

i, hSE [m]>, which is de-
m=M

k=1

SACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOPUBLICATION

>d9

do

instantaneous amplitude frequency respomsged by SER, (), is [20], [24]

1

™

— |, [m]|* sin® (§)
o2 [m] sin® (0)

SER,, (x)

vl
/ exp
0

1

1 w7 -
— / exp
™ Jo

SE 2 2
2 % and the last equality follows
from substitution of (§3) and (34). Note that the SEP expres-
sion above depends onlyand h3E[m]. We shall, therefore,
denote (35) by SEP (Z, hSE [m]) henceforth.

Now averaging over the index: to get

. MiN—1) K . K
sP SE ;
SER, <{{hk [m]}m:M }k_1 , {hk [m]}k_1>, which
is denoted by SER (Z), yields

=[] b5E ]

sin? (0)

(39)

K
SER, ()

(36)

After averaging over fading.e., =), the SEP as a function
of the SNR per branch = &= is

1K %T( o0 oo
AN
1’0 o Jo

Fy: (y')dz'dy’de  (37)

—' b3% [m]

sin? (6)

SER. (7)

-

X fX,;,Y,; (',y")

NN
I
T

where fx; v, (2',y’) is the joint probability distribution of

~ 2
the exponentially distributed RV 2 ‘h%E[m]‘ and RV
A M+N-1

2

N 2
hifp[m]‘ . Thus, Y} is the sum of correlated

L=
exponeﬁtially distributed RVs, andy, (y') denotes its cu-
mulative distribution function (CDF). Deriving a closedrin
expression for SER(n) in (37) is analytically intractable
since closed-form expressions ff¢,; vy, (2/,y’) and Fy: (y')
do not exist. Therefore, Monte Carlo averaging techniq@bs [
are used to evaluate the fading-averaged SEP, 3@ from
SER,, ().
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We now derive the SEP &fPSK for a system that performs

receive AS on a symbol-by-symbol basis. As shown in tt e
next section, symbol-by-symbol AS is analytically tradéab
and provides insights for per-packet AS. >
2) Symbol-By-Symbol AS SEP For MPSK: Receive AS is
on an instantaneous symbol-by-symbol basis accordingip (. g w0'r
with the channel gain estimate>® ;] used to decode the g
MPSK symbol received at time:. 5
% —— 1 x 1 DPS prediction & no AS
Theorem 1 The SEP of arMPSK symbol received at time: 8 12} —+— 1% (1,2) DPS prediction & AS
in a time-varying channel for a system with one transmit ar L% e preicton 848
K receive antennas employing selection criterion (24) wit —*—1x1perfectCSI&noAS
channel gain estimatéS [m] to decode anVMPSK symbol e
received at timen is given by - ‘ ‘ ‘ ‘ ‘
K K—1 K _ r 0 5 10 SN;S(dB) 20 25 30
SERUIEEED 3 SENND DI S
Ti=1r=0  lo,f=1 7! (4013,01 [m])
=14 #..#l:#k Fig. 3. PER performance of the proposed AS algorithm fdr & (1, 2)
y 1 system. 4PSK, data packet lengtiv = 40, training pilots L = 2, post-

02 e 1] (1= [0 crca ] + 2.y 1] )

[ (8
[m]l

sin? (6)
—yZCff [
)
() + 2 e, 1] )

) ——+
O-I%,Cl [m] O-I%,Cg

X

2 (1 - |:pz Cc1C2

selection pilotsL’ = 2, and T}, = 37T%).

varying channels. In the sequel, a system with one transidit a
one receive antenna is denotedlas 1, while a system with
one transmit and{ receive antennas out of which only one is
selected is denoted dsx (1, K). Unless otherwise stated, a
1x (1, K) system is simulated with the following parameters:
(i) symbol durationTs = 20.57 us chosen according to [23],
(i) packet size N = 40 symbols, (iii) packet duration of
0.8228 ms, (iv) user veloCityvmax = 100 km/h = 27.8 m/s,

\/Pk m] + p? [m] (v) carrier frequencyf. = 2GHz, (vi) normalized Doppler

( ae s bandwidthvmax = 3.8 x 1073, (vii) symmetric spectral support

(1- [pkym[ m] 4+ 52 s, (])) W = (~Vmax vma), (Vi) MPSK modulation with Gray

labeling, and (ix) channel gains generated assuming plane-
v, VY dz dy 6 (38) Wave propagation [26], i.e.,
Ok,c1 [m] Ok,ca [m] P_1
K =
where the notation Z compactly denotes im] pz:;) ap exp(j2mym) (39)

lo,...,

Lk . to=1 i 5 ?“ 7k where the number of propagation paths is sePte- 30, the
) Z Z Z , CSPIm] £ normalized Doppler shift per path, = vmax cos o, Where
lo=1 l;= o=1 =1 ! path anglesqa, are uniformly distributed ovef—= ), the

(Ih ;«ék) (12;5 da#l) (k1 ;éll ..... L #Z—(I)SE[ 12 () path weights are:, = #exp(jwp), and v, is uniformly

’Si[ [ = o2 Zp[m] 1+MlSESP’ bSE[m] = %TZSE[—ST):L%M distributed over[—7 7). We note that the random path

and Iy (1) is the zeroth-order modified Bessel functio
of the first kind. In (38), pk.c;e, [m] and py ¢, s, [m] de-
note the correlation coefficients ofXy ., [m], Xk, [m])

and (X;C o Im], Xk.s, [m]), respectively, where X}

~ 2
BEm]| = X, ] + X5, ] and i 2 [ ]
Xk,cz [m] + ij,Sz [m]’ and (Xk,cl [m] 7X7€,81 [m]) and
(Xk,eo [m], Xk s, [m]) are i.i.d. zero-mean Gaussian RVs wit

variancesoy . [m] = o}, [m] and o} . [m] = o ,, [m],
respectively.
Proof: The proof is given in the Appendix. [ |

VI. SIMULATIONS

arametersy, and v, are assumed to be constant over an
S cycle time intervalZeyce = {0,1,...,M + N — 1} but
change independently from cycle to cycle. The covariance
function of {k [m]} converges tar;, [Am] = Jy (27VmaxAm)
for P — oo, whereJy (+) is the zeroth order Bessel function of
the first kind [22]. The channel model in (39) is also suitable
for the evaluation of channel prediction algorithms [22].

h Figs. 3 and 4 show the PER of the proposed receive AS

algorithm as a function of average SNR forx (1,2) and
1x(1,4) systems, respectively. For comparison, we also show
the PER performance of (i) & x 1 system with perfect CSI
and no AS, (i) al x 1 system employing Slepian basis
expansion channel prediction and no AS, (iii)x (1,2) and

1x (1, 4) systems employing discrete Fourier transform (DFT)

We now present numerical results to gain further insigasis expansion channel prediction and AS according to the
into the previous analysis and study performance over timmaximum total post-processing SNR selection criterion, as
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10° g
0
x 7 10"
g g
F Kl
[ ©
S <]
5 ®
g —b— 1 x 1 DPS prediction & no AS ‘\ I —Pp— 1 x 1 DPS prediction & no AS
§ —+—1 x (1,4) DPS prediction & AS ~ N § 102H —+— 1 x(1,2) DPS prediction & AS
—o6— 1 x(1,4) DFT method & AS S —o6— 1 x(1,2) DFT method & AS
10°H —=—1x (1,4) no prediction & AS > 3 —8&— 1 x(1,2) no prediction & AS
——1 x 1 perfect CSI & no AS —— 1 x 1 perfect CSI & no AS
= = =1 x(1,4) proposed AS algorithm = = =1 x(1,2) proposed AS algorithm
—— 1 x(1,4) perfect CSI & AS —— 1 x(1,2) perfect CSI & AS
107 - : : . . 10° : : : . '
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR (dB) SNR (dB)

Fig. 4. PER performance of the proposed AS algorithm fdr & (1,4) Fig. 5. PER performance of the proposed AS algorithm fdr =& (1, 2)
system. 4PSK, data packet lengttvn = 40, training pilots L = 2, post- system. 4PSK, data packet lengttvn = 40, training pilots L = 3, post-
selection pilotsL’ = 2, and T}, = 3T5). selection pilotsL’ = 2, and T}, = 37T%).

10° :

in (22). DFT channel estimation is used for data decoding, (i
1x(1,2) and1x(1,4) systems employing AS without channe
prediction. We note that the antenna with the highest cHani
gain estimatehy, [m] in (8) is selected since no channel pre
diction is used, (V)L x (1,2) and1 x (1,4) systems employing
Slepian channel prediction and AS according to (22), with tt
predicted channel gainsh$” m] | m € Zg } used not only for
selection but also data decoding, (Vix (1,2) and1 x (1,4)
systems employing the AS algorithm proposed in Sec. I
Now the predicted channel gains are used for AE selectic 10°H

—+— MSE; { for AE 1 (sim.)
—e— MSE; & for AE 1 (analysis)

—8— MSE§ X for AE 2 (sim.)

Mean Square Error (MSE)
=
o

P Estima
— MSES)‘LNfor AE 2 (analysis) sumator

while the refined channel gain estimates®® m] |m € Idt} —x— MSE}; \for AE [1] (sim.)

are used for decoding, and (vii) x (1,2) and 1 x (1,4) —v— MSE[}7 for AE [i] (analysis)

systems with perfect CSI and employing AS according to (2 107 s 0 P P pv 0
(with Ry [m] replacingh3®[m]). Inspection of Figs. 3 and 4 SNR (dB)

reveal that thel x (1,2) and1 x (1,4) systems employing
the proposed AS algorithm achieve SNR performance ga'”SF‘.E]'. 6. Sample mean MSE of the basis expansion predictor and estimator
excess off dB and9 dB over thel x 1 system with perfect CSI for a 1 x (1,2) system. (Prediction/Estimation horizaN = 15, training
and no AS, respectively, at a PER equal o 2. To highlight pilots L = 2, post-selection pilotd.” = 2, and T, = 5T%).
the importance of channel estimation, the performance ®f th
same proposed x (1,2) and1 x (1,4) systems are about ) )
dB and6 dB worse thanl x (1,2) and 1 x (1,4) systems The sample mean is plotted for Bx (_1,2) system with
employing AS with perfect CSI at the same PER 16 2, a/packet lengthV- = 15, L = 2 training pilot symbols,
respectively. Also, error-floors exist at moderate to higiRS L =2 p_os_t-selectlon pilot symbols, arif, = 5TS'_ That
for the 1 x (1,2) and1 x (1,4) systems employing AS either 'S AS tr_a|n|ng1 symbols for AEL 2and AE 2 are recewgd at
with DFT basis expansion or without channel prediction. IHMe indicesTy = {0,10} and Ty 235{5’15}' respe;;twely.
contrast, no error-floors arise with Slepian basis expansio '© valuate the MSE per sammléSE; [m] and MSE;™ [m],

Fig. 5 shows the PER of the proposed receive AS algorith#/€" in Sec. V-A, we use Clarke’s spectrum:
for al x (1,2) system withL = 3 AS training pilots rather 51 ) { —L Y| < Vmax

n(V) =

thanL = 2 as in Fig. 3. Comparison of Figs. 3 and 5 confirms mman /1~ (55 ) _ (40)

an SNR performance gain of aboutdB at a PER= 102 0 otherwise.

due to the addition of one AS training pilot. It can be observed that: (i) there is a very good match between
The analytical and simulation results for the sample med#me analytical and simulation results, (i) the sample mefin

of the Slepian estimator and predictor for AE denoted the estimator is less than the sample mean of the predictor,

MAN=1 iii) the sample meaMSE3", of AE 2 is slightly less than
by MSESS, 2 L1 S MSES[m| and MSES, 2 () 2,N 2 :
Y N NS el kN the sample meaNSES", of AE 1. This is expected since the

M+4N-1 L : . o
% > MSEgp[m], respectively, are depicted in Fig. 6AS training pilots for AE2 are received closer in time to the

= ‘prediction horizorZy = {20, 21, ..., 34} than the AS training
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0.5 : : : 10 .
—oe— MSESP[m] (analysis)
0.451 oZee[m] (sim.) 3

0.4} -| —8— MSESE[m] (analysis) .
oZselm] (sim.)

Variance

Symbol error probability (SEP)

—&—1 x (1,2) symbol-by-symbol AS (sim.)
— © -1 x(1,2) symbol-by-symbol AS (Theorem 1)
1 x (1,2) proposed AS algorithm (sim.)

O i 107 i i i i i
0 5 10 15 20 25 30 35 0 5 10 15 20 25

Discrete time m SNR (dB)

Estimator

Fig. 7. Comparison of the simulated and calculated exprasdor the basis Fig. 8. SEP for the20-th 4PSK data symbol as a function of the average
expansion error variance foriax 1 system at an average SNR= 20 dB. SNR for al x (1,2) system. (Data packet length" = 40, training pilots
(Prediction/Estimation horizofV = 40, training pilotsL = 2, post-selection L = 2, post-selection pilot’ = 2, and T}, = 5T%).

pilots L' = 2, and T}, = 5T5).

symbols for AE1, and (iv) there are upward transitions in the
estimation and prediction MSE curves which occur in2hel
and 10 — 12 dB ranges, respectively, which are the result ¢
an increase of the subspace dimensioim (15). In addition,
they indicate thatD is suboptimal in these intervals.

Fig. 7 compares the simulated and analytically obtaine
variances of the estimation and prediction errors in Seé. V-
It can be observed that: (i) these variances are close to e
other, and (ii) not surprisingly, the MSE per sample of th
predictedMISES? [m], in contrast to the MSE per sample of the
estimatedMSE®E [m], increases with the prediction horizon
vvlhich r:s consistent with the behavior of typical predictiol e e ot iy
algorithms. 10° \ \ \ \ i

Fig. 8 shows the SEP of the 2B-4PSK symbol as a 0 ° 10 SNR (dBl)S 20 2
function of average SNR fot x (1,2) systems employing
the proposed receive AS algorithm and the symbol-by-symbol _ _
instantaneous receive AS scheme, which is analyzethes £9.°% 5= far g;es;'zgnﬁs:(Dggap?ég‘e?%ﬁ;ﬂi ff”igo?ra‘i’;i;hge So e
orem 1. It can be observed that the curves are close to eagh o post-selection pilotd’ = 2, andT), = 5T%). '
other. Since the SEP behaviour might be slightly differemt f
the N = 40 different symbols of the data packet, we plot

the SEP for the firséPSK symbol in Fig. 9. A gap can bemobile station is considered, where only one receive aatenn
observed between the curves at moderate to high SNRs sipc@elected. By explicitly accounting for practical coastts
channel prediction for the first Symb0| is much better thqﬁ]posed by next-genera‘[ion wireless standards such aﬂ'@ai
channel prediction for the 20}Symb0|, which Clearly affects and packet reception for antenna selection (AS), a 5ing|e
the selection decision and, thus, the SEP. Slmllarly, these receive AS method is proposed for time_varying channels
slight upward shift of the proposed AS scheme’s SEP curve|iging the low-complexity Slepian basis expansion channel
Fig. 9, due to the fact that the first symbol is located far fromredictor and estimator. Closed-form expressions areveferi
the post-selection pilot® = {11,31}. We also observe from for the channel prediction and estimation error as well as th
Figs. 8 and 9 and from other simulations (not included) th&Ep ofMPSK with receive AS. It is shown that, in spite of the
the SEP of the first few symbols in a packet for a system whigliorementioned realistic limitations, the proposed ASesch
uses symbol-by-symbolinstantaneous receive AS is loveeT thoutperforms ideal conventional SISO systems with perfect
that of the AS algorithm proposed in Sec. IV, while the SERghannel knowledge and no AS at the receiver and conventional

,_.
O\
£

Symbol error probability (SEP)

!
IS

=
o

f| —=— 1 x (1,2) symbol-by-symbol AS (sim.) Y

of remaining symbols are close to one another. complex basis based estimation. Although the focus was on
single carrier communication over time-varying frequency
VII. CONCLUSIONS flat channels, the proposed AS scheme may be extendible to

The downlink of a cellular radio system consisting o©OFDM systems. The extension to the case where subsets of
a single-antenna base station transmitting td{aantenna more than one receive antenna are selected in time-varying
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frequency-selective channels remains as an important fopi
future research.

APPENDIX
A. Derivation of the Conditional Mean and Variance

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOPUBLICATION

expression above depends onIyZo,nandB?n’f [m]. Therefore,

we shall denote it by SE,I?(ZW, hSE [m]) henceforth.
Now averaging over the index i,, to get

7 SE
hk

SEP, <{E§P[m]}f

A

K
[m]}k—1>' denoted for brevity

If A and B are zero-mean jointly complex Gaussianby SEF, (Z), yields

then [20], [21] K K
= _ ~ 7 SP
E{A|B}=E{aB} @(BBY B @) SEE) = Z?*Qm‘“{mﬂmﬂhj
var {A| B} = var {A} —E{AB"} (E {BB*})lE{BA(*} ) «SEP, (Em — k, hSE [m ])
42 "
From (41), it follows thatE{egE[m]ng[m]} - L [ ) . L
el oo 7 SE - ;Z HPr (‘hlsp[m]‘ ‘hgp[ ]‘
rran PSEm]and B {n;fm] [ASEm]} = o, =\
Substituting and  simplifying  yields the desired K K
conditional mean result in (33). Similarl;/, from (42) ’ {hip[m]} ))
[m] k=1
we get thatvar{ Em] | hSE[m ]} H;;se[m] and ’ASE[ ]’2 S
) Miw — |h2=m]| b= [m
V&I‘jng [m] |h§E[m]} = Np. Substituting and simplifying x/ exp i s k de.
yields the conditional variance result in (34). 0 sin” (6)
(47)

B. Proof of Theorem 1

From (32), the ML soft estimate for the symbol receive
by AE i,, at timem can be modified to

= )| ] — (S5 ) dfm] €55
+ (hgE [m])* ne, [m]. 43)
Conditioned onA$E [m] and d[m], r;,, [m] in (43) is a

complex Gaussian RV whose conditional mean [m] and
variances? [m] are given by

72, [m]

N 2
fire, ] = [S= [m] | d [m] CSE [ (44)
2
of, fml = |BSE[ml| " Jafm]? (1= ¢S m)
N 2
+Ny |hSE [m]‘ (45)
wherecSE [m] £ 1 =
im 1+Ufse [m] — 1+MSESE -
K
Conditioned on < a$P[m] . im, and hSE[m],

the SEP of an MPSK sym]i)o]l received at timem

K
SEPR, ({hifp[m]}k iy HSE [m]), which is denoted
=1 ™
by SEB, (), is [20]
Mt _ 202 (z
SER, () = l/ exp [ e 171 sin () 4
™ Jo O'%m [m] sin” ()
2
| ]| bSE m]
= —/ exp — do
™ Jo sin® (6)
(46)
A CSEm) ? sin?(x
where b3E[m] = (S)E—(M) and the last equality

1-¢3 +=

follows from substltutlng (44) and (45). Note that the SE

The expression for the SEP, when averaging over fading

ﬁe, =), becomes
- bSE[ ]
%mw-——z/ /‘/“%smm)
< fx,. v, (2.9) IIfk; )dzdyds  (48)

l;ﬁk
where fx, v, (z,y) is the joint PDF of the two correlated
N 2
exponentially distributed RV&;, = ‘hifE [m]‘ = Xk, [m]+

“ 2
[P | = Xnea ] + X ]

ij-,Sl [m] and Y.
given by [27]

1
dai ., [m]

Ixe v (2,y) 3

Ok.co [m]

1
(1= [PReres ] + 0y, ]

o[

X

X

x

2
k,cl

[m]
-1
QO—vﬁ@M+@mmﬂ)

)
( N

(1 N [pkvclcz [m] + pk?70182 [m]D
Tkyer [M] O ey [M)]

i)

where z, y > 0, I(-) is the zeroth-order modified
Bessel function of the first kind, X, [m], Xk.s, [m])
and (Xy., [m], Xk, [m]) are iid. zero-mean Gaus-
Bian RVs with variancess} . [m] or., Im] and

+ pk 182 [m]

(49)
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Op o, M| = 0}, [m], respectivelypy c,c, [m] andpy. ¢, s, [m]
are the correlation coefficients 06Xy, ., [m], Xk, [m]) and
(Xke, [m], Xk.s, [m]), respectively, and lie if—1, 1).
In (48), Fy, (y) is the CDF of the exponentially distributed
2

RVY 2 ’Blsp[m]‘ , and is given by

(5]
(6]

(7]

_ [ 1-exp(=¢Fmly), y=0 [8]
A ={ g V20 o
. (9]
where the rate parameter igF[m] = m -
1 K [10]
TFMSES[m]
Subsututmg (50) and (49) into (48) yields
[11]
bSE[ ]
s - 15[V o (25
) Z sin? (0) [12]
Xka;Yk (‘T’ y)
K [13]
X H (1 —exp(— P [m] y)) dzdydo
Ik [14]
K K-1 K T
1 (-1)
= X 2. 5]
g k=1 r=0 Le=1 7l (40£7C1 [m])
10_1 Atk
1 [16]
X
s 1] (1= 6 v )+ ]}
/ / / exp < bSE[ ]
sin? (0) [18]
< Y
—y ) ¢ m] - + 19
jzzl lj [ ] Uiq [m] Uﬁy@ [m] [19]
1 [20]
X
_ 2 2
2 (1 [pk c1ca [m] + pk,c152 [m]}) [21]
I \/pk 0102 + pk ,C182 [m]
*£o [22]
(1 - |:pk,clc2 [m] + p%,clsg [m]:|)
V7Y )
X dxdy dé 51
Te o)) 40 D e
where the identity [T/S; (1—exp (~CPP[m]y)) = [24]
I£k
K r
] Z exp [ —y > {gp[m] is used in |y5
= l =1 j=1
1, 15"é FElr
the last equallty [20]. [26]
[27]
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