ABSTRACT The time-variant vehicle-to-vehicle radio propagation channel in the frequency band from 59.75 GHz to 60.25 GHz has been measured in an urban street in the city center of Vienna, Austria. We have measured a set of 30 vehicle-to-vehicle channel realizations to capture the effect of an overtaking vehicle. Our experiment was designed for characterizing the large-scale fading and the small-scale fading depending on the overtaking vehicle’s position. We demonstrate that large overtaking vehicles boost the mean receive power by up to 10 dB. The analysis of the small-scale fading reveals that the two-wave with diffuse power (TWDP) fading model is adequate. By means of model selection, we demonstrate the regions where the TWDP model is more favorable than the customarily used Rician fading model. Furthermore, we analyze the time selectivity of our vehicular channel. To precisely define Doppler and delay resolutions, a multitaper spectral estimator with discrete prolate spheroidal windows is used. The delay and Doppler profiles are inferred from the estimated local scattering function. Spatial filtering by the transmitting horn antenna decreases the delay and Doppler spread values. We observe that the RMS Doppler spread is below one-tenth of the maximum Doppler shift 2 f v/c. For example, at 60 GHz, a relative speed of 30 km/h yields a maximum Doppler shift of approximately 3300 Hz. The maximum RMS Doppler spread of all observed vehicles is 450 Hz; the largest observed RMS delay spread is 4 ns.

INDEX TERMS 5G mobile communication, automotive engineering, communication channels, fading channels, intelligent vehicles, millimeter wave propagation, millimeter wave measurement, multipath channels, RMS delay spread, RMS Doppler spread, parameter extraction, time-varying channels, two-wave with diffuse power fading, wireless communication
I. INTRODUCTION

The idea of automated cars represents a tremendous attraction to both, industry and the research community. More than ten years ago, a first forward collision warning system based on a millimeter wave (mmWave) automotive radar was commercialized [3]. Nowadays, reliable mmWave communication systems, supporting vehicle-to-vehicle information exchange, are anticipated to be among the key enablers for automated vehicles [4]. Due to the large available bandwidth at mmWave bands, even raw sensor data exchange between vehicles is possible [4]. Millimeter wave vehicular communications has two main distinctive features as compared to sub-6-GHz vehicular communications. Firstly, the use of directive antennas – at least at one link end – and secondly, the much higher maximum Doppler shift. This high maximum Doppler shift, being directly proportional to the carrier frequency, is also viewed as a possible stumbling stone for vehicular mmWave communications. It is, however, shown theoretically in [5] and [6] that directional antennas, anticipated for mmWaves, act as spatial filters. The Doppler spread, and hence the time-selectivity, may be drastically decreased by beamforming. Experimentally, this has first been demonstrated in our prior work [2].

Literature Review:
The analysis of static mmWave channels is already well advanced, see for example [7]–[29]. For static environments, frequency-domain channel sounding methods based on vector network analyzers are frequently used [30]. However, channel sounding concepts with sufficient sampling rates of the time-varying channel have been so far only treated by a few research papers [1], [2], [31]–[34].

Interestingly, mmWave frequency bands have been candidates for vehicular communications already for several decades [35], [36]. Millimeter wave train-to-infrastructure path loss is measured in [35], mmWave vehicle-to-vehicle communication performance is studied in [36]. Both works use narrowband transmissions. In [37] and [38], the focus is on inter-vehicle path loss results. Recent advances on mmWave circuit technology [39] renewed the interest in vehicular mmWave communications [40] and for joint vehicular communication and radar [41]. In [42], vehicle-to-vehicle (V2V) channel measurements at 38 GHz and 60 GHz, using a channel sounder with 1 GHz bandwidth, have been conducted. The antennas in [42] were put into the bumpers, thereby the dominating multipath components (MPCs) are the line-of-sight (LOS) component, a road reflection, and a delayed component reflected at the guard rails. In [43], 73 GHz V2V large-scale fading and small-scale fading analysis is provided for approaching vehicles. Intra-vehicular Doppler spectra of vibrations appearing while the vehicle is in operation are shown in [44], [45]. In [46], signal-to-noise ratio (SNR) fluctuations for 60 GHz transmissions with 5 MHz bandwidth in a vehicle-to-infrastructure scenario are investigated. Time-varying receive power and time-varying small-scale fading for vehicular channels at 5.6 GHz are addressed in [47].

Contributions of This Paper:
With this article, we contribute to the dynamic mmWave vehicle-to-vehicle channel research by analyzing the effect of an overtaking vehicle on the mmWave V2V wideband (510 MHz) channel. Our experiment in a real-world street environment is designed to make the experiment as controllable as possible. The wireless link is always LOS and unblocked. We demonstrate that the size and the relative position of the overtaking vehicle greatly influences the large-scale and small-scale fading parameters. Furthermore, Doppler dispersion is strongly suppressed by the transmit horn antenna. The data we analyze consist of channel impulse responses (CIRs) during the overtaking situations with 30 vehicles. For the statistical analysis we differentiate between cars, sport utility vehicles (SUVs), and trucks.

Organization of This Paper:
In Section II, we present our measurement scenario in detail. In Section III, we analyze the receive power fluctuations as a function of the relative position of the overtaking vehicle. Regardless of the position of the overtaking vehicle and its size, approximately 50% of the receive power belongs to the channel tap corresponding to the LOS delay. Accordingly, in the following Section IV, we analyze the small-scale fading of the LOS tap. The two-wave with diffuse power (TWDP) model is briefly introduced and we show that it explains our data very well. In Section V, we focus on delay and Doppler dispersion. The analysis of the root mean square (RMS) Doppler spread is based on the local scattering function (LSF). The obtained RMS Doppler spread values are then compared against RMS Doppler spread values of commonly used models. We conclude with simple channel modeling guidelines.

Notation:
We mention here only notation that is not commonly in use. Estimated quantities are marked with \(\hat{\cdot}\). Functions with discrete input variables are denoted by square brackets \(f[\cdot]\); functions with continuous inputs are denoted by parentheses \(f(\cdot)\). The floor function is indicated via \(\lfloor \cdot \rfloor\) and the ceiling function is indicated via \(\lceil \cdot \rceil\). “Corresponds to” is symbolized with \(\overset{\Delta}{=}\).

II. SCENARIO DESCRIPTION

We have measured a set of 60 GHz vehicle-to-vehicle channel realizations to capture the effect of an overtaking vehicle. The motivation for our setup is the scenario of two cars driving, one behind the other, keeping constant distance, and communicating via a 60 GHz mmWave link. A third vehicle then overtakes this car platoon and thus influences the wireless channel, depending on the overtaking car’s relative position.\(^1\)

\(^1\)Similar results will be obtained, if the car platoon overtakes a vehicle.
consists of 30 different measurement runs. We are observing the effect of overtaking vehicles with excess speeds of up to 13 m/s. At the transmitter (TX) site, a horn antenna with an 18° half power beam width is used and aligned towards the receiver (RX) car. Surrounding buildings are filtered out by the directive horn antenna. At the RX site, a custom-built omni-directional λ/4 monopole antenna is used. The RX has an omni-directional pattern so that scattered2 waves from the passing vehicle are not filtered out. This situation occurs, for example, in directional neighbor discovery [48], where only one link end applies beamforming. Our RX equipment is put into a static (parked) car. The RX antenna is fixed to the left rear car window. Our TX is approximately 15 m behind the RX car. Single reflections at the TX car do not occur because of the directivity of the horn antenna, while double reflections involving the TX car are below the receiver sensitivity. Hence, the TX car is omitted and replaced by a simple tripod mounting. The TX and RX placement is shown in Figs. 1 and 2.

To simplify the measurements, we do not move TX and RX, but rather keep them static, and have the overtaking car emulated by regular street traffic passing by. As indicated above, this approach is valid because interaction by houses and other static objects are negligible due to the directivity of the TX horn antenna. Due to the spatial filtering, Doppler is mainly determined by the relative velocity of the overtaking vehicle. Our case corresponds to a “moving frame of reference”. Keeping TX and RX static makes a very accurate time and frequency synchronization possible. The frequency synchronization is achieved via a 10 MHz reference signal distribution to all clocks. The time synchronization is achieved with a marker signal that triggers the receiver when the sounding signal is transmitted. A measurement is triggered once the overtaking vehicle is driving through a first light barrier, positioned at \(d_{\text{start}} \). The distance \(d_{\text{start}} \) is measured from the rear bumper of the parked receiver car. The mean velocity of the overtaking vehicle is estimated through a second light barrier, positioned 3 m after the first one. We measured the time \(\Delta t \) it took for the vehicle to arrive at the second light barrier. By means of the mean velocity estimate \(\hat{\nu} \) and the starting point \(d_{\text{start}} \), we estimate the position of the overtaking vehicle at all time points \(m \) to

\[
\hat{d}(m) = \hat{\nu} \cdot m \ T_{\text{snap}} + d_{\text{start}} = \frac{3 \ m}{\Delta t} \ T_{\text{snap}} + d_{\text{start}}, \tag{1}
\]

where \(T_{\text{snap}} \) is the snapshot rate, provided in Appendix B. We hence take the front bumper of the overtaking vehicle and the rear bumper of the parked receiver car as reference planes. The distance \(d \) is thus referred to as the “bumper to bumper distance”. The range of interest is marked via meter marks on the left-hand side in Fig 1. Memory space is limiting the recording time of our 510 MHz broadband signal to 720 ms. Due to this limitation, the recorded measurements do not necessarily cover all distances of interest. To cover the distances shown in Fig. 1, the light barriers, triggering the measurements, are placed at three different positions. In other words, \(d_{\text{start}} \) is varied. An exemplary light barrier position to cover the larger distances is illustrated in Fig 1.

III. RECEIVE POWER FLUCTUATION (LARGE-SCALE FADING) DURING OVERTAKING

We have built a dedicated channel sounder for this experiment (for details see Appendix B) that provides estimates of the time-variant transfer function \(H[m, q] \). The time index is denoted by \(m \in \{0, \ldots, S - 1\} \) and the frequency index is denoted by \(q \in \{0, \ldots, K - 1\} \), where \(K = 103 \). The time-variant CIR \(h[m, n] \) with delay index \(n \) is obtained via

FIGURE 1: Bird’s-eye view of the measurement site. TX and RX are static. The overtaking car is moving relative to the static vehicles with excess speed \(\hat{\nu} \). This models a moving car platoon being overtaken by a single vehicle. The overtaking vehicle is sketched at a bumper to bumper distance of \(d = 0 \) m.
an inverse discrete Fourier transform. The CIR h exhibits a sparse structure. Therefore, the median of all samples of h is used as estimator of the noise floor [49]. All values of the CIR below a threshold that is 6 dB above this noise floor are set to zero.

Similar as in [47], we estimate the large-scale fading by applying a moving average filter of length L_t. Likewise, we assume that the fading process is stationary as long as the movement of the scattering object (the overtaking vehicle) is within $L_c \triangleq 50 \lambda = 50 \cdot 5$ mm $= 0.25$ m. The filter length L_t depends on the velocity of the overtaking vehicles and is always chosen to cover L_c and to extend it to the earlier and later time point by $\Delta L = 10$ samples [47]. It hence calculates to

$$L_t = L_c + 2 \Delta L = \left\lfloor \frac{50 \lambda}{v \cdot T_{\text{snap}}} \right\rfloor + 2 \cdot 10.$$

(2)

The estimate of the time-varying second moment $\hat{\Omega}[m]$ is then calculated as

$$\hat{\Omega}[m] = \frac{1}{I_U[m] - I_L[m] + 1} \sum_{m'=I_L[m]}^{I_U[m]} \sum_{n=0}^{K-1} |h[n,m']|^2,$$

(3)

where the lower and the upper sum index are

$$I_L[m] = \max(0, [m - L_t/2]),$$

(4)

$$I_U[m] = \min([m + L_t/2], S - 1).$$

(5)

Our scenario is dominated by the LOS component. As we keep TX and RX static, this component will always appear at the same delay tap, called n_{LOS}. To analyze the strength of the LOS delay tap relative to all taps, we estimate the second moment of the LOS tap as well.

$$\hat{\Omega}_{\text{LOS}}[m] = \frac{1}{I_U[m] - I_L[m] + 1} \sum_{m'=I_L[m]}^{I_U[m]} \sum_{n=0}^{K-1} |h[n_{\text{LOS}},m']|^2.$$

(6)

The delay index n_{LOS} is calculated based on the measured TX–RX distance. Both estimates $\hat{\Omega}[m]$ and $\hat{\Omega}_{\text{LOS}}[m]$ are parameterized by the time index m. All time-dependent quantities are equally well parameterized by the relative position estimate (1). With an abuse of notation we denote, for example,

$$\hat{\Omega}[d] = \hat{\Omega}[\hat{d}^{-1}[d]].$$

(7)

A. STATISTICAL EVALUATION AND DISCUSSION

In this sub-section, we perform the statistical evaluation of the large-scale fading and then discuss the results. The experiment was conducted for 30 different vehicles, from which we derive ensemble statistics.

The first quantity of interest is the position-specific relative LOS tap gain, that is $\hat{\Omega}_{\text{LOS}}[d]/\hat{\Omega}[d]$. This quantity is evaluated as boxplot in the top panel of Fig. 3. Our evaluation is based on a window size of $L_c = 50 \lambda = 0.25$ m length. For sake of illustration, we plot the graphs on a meter based grid by rounding d to the nearest integer meter value. In all the boxplots of our contribution, the bottom and top edges of the box indicate the 25th and 75th percentiles. The whiskers show the 5th and 95th percentiles. All observations outside the whiskers are marked with crosses. The bottom panel of Fig. 3 shows the number of samples we obtain for each meter bin. Please note that the maximum number of samples (per bin) is 120, since we observed 30 vehicles and obtain 4 samples per meter.

We observe that the LOS tap captures most of the channel gain and never drops below -4 dB. Cars (in red) and SUVs (in green) show a similar trend. For both vehicle types, the relative gain of the LOS tap increases when the overtaking car is at larger distances d. The additional MPC due to the overtaking vehicle fades out and the limiting value is reached after $d > 5$ m. Trucks show a different trend. If a truck is close to the RX, the relative gain of the LOS tap is increased, but for larger distances it approaches a lower limiting value. This is intuitively explained by strong MPCs generated at the side wall of trucks. Whenever a truck is “close enough”, these MPCs are not resolved in the time domain and are binned in the LOS tap.

To further study the above mentioned side-wall wave interaction effect, we analyze the gain increase of the LOS

FIGURE 2: Measurement site. TX and RX are static. Urban street traffic is passing by. At this snapshot, the overtaking vehicle is at a bumper to bumper distance of approximately $d = 6$ m.
FIGURE 3: (top) Box plot of the LOS tap gain relative to the gain of all taps. When cars and SUVs are close to the RX antenna ($d = 1 \text{ m}$), additional MPCs are created, thus decreasing the relative LOS gain. For trucks the converse is true because strong interactions with the side wall (scattering, diffraction) add power to the LOS tap. (middle) Box plot of the LOS tap gain increase by an overtaking vehicle compared to “no vehicle present”. When cars and SUVs pass by, the LOS tap is hardly affected. The side walls of trucks strongly reflect impinging waves. (bottom) Number of samples used for the evaluation above.

IV. SMALL-SCALE FADING OF THE LOS TAP DURING OVERTAKING

As we discussed in the section above, the LOS tap is the dominating contribution of the channel gain. Here, we are interested in the small-scale fading behavior of this LOS tap. To suppress large-scale fading effects, the channel is normalized by the square root of the estimated second moment, that is

$$\tilde{h}[m, n_{\text{LOS}}] = \frac{h[m, n_{\text{LOS}}]}{\sqrt{\hat{\Omega}_{\text{LOS}}[m]}}. \quad (8)$$

As a demonstrative example, we provide the channel impulse responses and estimates of the second moment for an overtaking truck, see Fig. 4 for a photograph of the truck and Fig. 5 for the LOS channel estimates. Before we study the small-scale fading statistics, we note that there is an oscillation with evolving instantaneous frequency visible in Fig. 5. The oscillations of the red curve with time-varying beating frequency can be explained by the Doppler shift changing with d, see
The TWDP small-scale fading model assumes fading due to the interference of two strong radio signals and numerous smaller, so-called diffuse, signals. In our case, the two strong radio signals are the unblocked LOS and a scattered component from an overtaking vehicle that arrives at the same delay tap. Our measurement bandwidth of BW = 510 MHz allows to resolve MPCs that are separated by a delay of ∆τ ≈ 1/BW ≈ 2 ns or a travel distance of ∆s ≈ c0/BW ≈ 60 cm. Every MPC separated less than these values is not resolved and interpreted as fading. We define the Fresnel ellipsoids for the MPCs arriving at the same time tap (bin) as the component corresponding to LOS

$$|\tau_{LOS} - \tau_{refl}| \leq \frac{1}{2BW}. \quad (9)$$

In Fig. 7, this ellipse is shown in red. The green car in Fig. 7 shows the maximum distance values (≈ 4.5 m) for which an overtaking car is producing TWDP fading. Figure 7 also shows the half power beam width of the TX horn. This illustrates that the distance region 0…4 m leads to a signal created by wave interaction with the overtaking vehicle that is not much weaker than the LOS component. Hence, we expect two specular MPCs at the same order of magnitude. In the region before, for example, −5…0 m the ellipsoid condition to experience TWDP fading is fulfilled but spatial filtering by the horn antenna suppresses the scattered component. By inspecting Fig. 5 again, one observes that the oscillatory behavior fades out after 5 m, as the overtaking truck is a rather short one. In the following subsection we briefly introduce the mathematics of the TWDP model. In Section IV-C, we focus on maximum likelihood estimation (MLE) of the model parameters and perform model selection to draw eventually statistical conclusions.

B. MATHEMATICAL DESCRIPTION OF TWDP FADING

TWDP fading was first introduced in [51]. A more extensive mathematical description was provided in [52]. For the convenience of the reader, we briefly summarize [52]. The TWDP fading model in the complex-valued baseband is given as

$$r_{complex} = V_1 e^{j\phi_1} + V_2 e^{j\phi_2} + X + jY, \quad (10)$$

where $r_{complex}$ is the complex-valued local field, V_1 and V_2 are the amplitudes of the two LOS components, ϕ_1 and ϕ_2 are their phases, and $X + jY$ is complex noise.
where \(V_1 > 0 \) and \(V_2 \geq 0 \) are the deterministic amplitudes of the non-fluctuating specular components. The phases \(\phi_1 \) and \(\phi_2 \) are independent and uniformly distributed in \((0, 2\pi)\). The diffuse components are modeled via the law of large numbers as \(X + jY \), where \(X, Y \sim \mathcal{N}(0, \sigma^2) \) are independent Gaussian random variables. The \(K \)-factor is defined analogously to the Ricean \(K \)-factor as the power ratio of the specular components and the diffuse components

\[
K = \frac{V_1^2 + V_2^2}{2\sigma^2}.
\]

The parameter \(\Delta \) describes the amplitude relationship among the specular components

\[
\Delta = \frac{2V_1V_2}{V_1^2 + V_2^2}.
\]

The \(\Delta \)-parameter is bounded between 0 and 1 and equals 1 iff both amplitudes are equal. Iff \(\Delta = 0 \), TWDP fading degenerates to Ricean fading. This transition from TWDP fading to Ricean fading is smooth. If the second specular component becomes very small, it can be absorbed equally well in the diffuse components. This is discussed in detail in Appendix C.

\[F_{\text{TWDP}}(r; K, \Delta) = 1 - \frac{1}{2\pi} \int_{0}^{2\pi} Q_1 \left(\sqrt{2K \left[1 + \Delta \cos(\alpha) \right]}, \frac{r}{\sigma} \right) \, d\alpha, \]

where \(Q_1(\cdot, \cdot) \) is the Marcum Q-function. Figure 8 shows an example of the probability density function (PDF) \(f_{\text{TWDP}}(r; K, \Delta) \) and CDF \(F_{\text{TWDP}}(r; K, \Delta) \) of the TWDP fading distribution.

C. MAXIMUM LIKELIHOOD ESTIMATION OF \(K \) AND \(\Delta \) AND MODEL SELECTION

Based on the filtered envelope measurement data of the LOS delay \(r[m] = |h[m, n_{LOS}]| \), we are seeking the TWDP fading distribution of which the observed realizations appear most likely. To do so, we estimate the parameter tuple \((\hat{K}[m], \hat{\Delta}[m])\) via MLE

\[
(\hat{K}[m], \hat{\Delta}[m]) = \arg \max_{K, \Delta} \sum_{m'=m-L_{c}/2}^{m+L_{c}/2-1} \ln f_{\text{TWDP}}(r[m']; K, \Delta)
\]

For the MLE, we take all samples within the assumed stationary length of \(L_{c} = 50\lambda \). The maximization is implemented as exhaustive search on a \((K, \Delta)\) grid specified in Appendix C. We also perform MLE for the Ricean \(K \)-factor. To do so, we restrict the maximization (14) to the parameter tuple \((\hat{K}, \hat{\Delta} = 0)\). Taking the data of the exemplary truck (Figs. 4 to 6), the estimated CDFs and their evolution is shown in Fig. 9. The three smallest distances (in Fig. 9) show CDFs where the truck is in proximity of the receive antenna. There we observe fading that is not well explained by a Ricean fit. The proposed TWDP fading model shows a superior fit. Only the last example at a distance of 6 m clearly fades according to a Rice distribution. Of course, TWDP fits...
must always be better than Rician fits as the Rician model is a special case of TWDP. However, the TWDP model introduces an additional parameter, which is not desirable.

Thus, to select between Rician fading and TWDP fading, we employ Akaike’s information criterion (AIC). The AIC is a rigorous way to estimate the Kullback-Leibler divergence, the relative entropy based on MLE [53]. Given the MLE fitted parameter tuple $(\hat{K}[m], \hat{\Delta}[m])$ of TWDP fading and Rician fading, we calculate the sample size N corrected AIC [53, p. 66] for Rician fading $(\Delta \equiv 0)$ and TWDP fading

$$\text{AIC}[m] = -2\sum_{m^2=m-Lc/2}^{m+Lc/2-1} \ln f_{\text{TWDP}}(r|m'); \hat{K}, \hat{\Delta}) + 2U + \frac{2U(U + 1)}{N - U - 1}. \tag{15}$$

where the model orders U for Rician and TWDP fading are 1 and 2, respectively. We choose between Rician fading and TWDP fading based on the lower AIC value. Due to the model order penalization in the AIC we avoid over-fitting. For our exemplary truck, the fitted parameters as well as the selected model are shown in Fig. 10.

D. STATISTICAL EVALUATION AND DISCUSSION

In this sub-section, we show the ensemble statistics of small-scale fading. Depending on the selected model, we take either the TWDP K-factor or the Rician K-factor. For Rician fits we set $\Delta \equiv 0$. Notice, however, that we rely then on the success of the model selection algorithm. Especially for very small Δ-parameters, very likely, we decide for Rician fading and hence bias the found Δ-parameters towards smaller values. This is discussed in Appendix C.

Figure 11 illustrates the fitted K-factors and Δ-parameters. The K-factor is smaller if the vehicle is closer to the RX antenna (closer to the rear bumper of the car). If the vehicle passes the static RX car, the K-factor saturates. Basically the LOS tap does not fade any longer. As mentioned above, the vehicle size is translated to the distance d. For longer vehicles such as trucks, it takes longer until the K-factor starts rising. SUVs lie in between cars and trucks.

Next, we focus on the Δ-parameter. We see that the length of the vehicle also affects this parameter. We observe TWDP fading, that is, $\Delta > 0$, whenever a part of the vehicle is still close to the RX antenna. The longer the vehicle, the longer this effect is visible. Remember that the median Δ value has a slight negative bias, as we set Δ to zero if we decide for Rician fading. This explains why the SUV median is zero at 2 m, although the Δ values are spread out; since in case of SUVs, the AIC decides for Rician fading more than half of the time. The AIC model selection decisions are color-coded in the histogram in the bottom panel of Fig. 11. The histogram in lighter shades is identical to the histogram of Figure 3. The darker shades show the number of samples where the AIC decided for TWDP fading. Again, looking at the maximum distances where TWDP fading occurs, we see a correlation with the vehicle length.
We set $M = 233$ which corresponds to a stationarity region of 30 ms in time. The power delay profile (PDP) and the Doppler spectral density (DSD) are calculated as a summation (marginalization) of the LSF over the Doppler domain or delay domain [54],

$$\text{PDP}[k_t; n] = \sum_{p=-M/2}^{M/2-1} \hat{C}[k_t; n, p] , \quad (18)$$

$$\text{DSD}[k_t; p] = \sum_{n=0}^{K-1} \hat{C}[k_t; n, p] . \quad (19)$$

Based on the PDP and DSD, we analyze the time-varying RMS delay spread and the RMS Doppler spread. To obtain these quantities, we use the formulas (10) – (13) from [57].

Our measurements were carried out in a street with 30 km/h speed limit. The average vehicle speed is in this order, but some vehicles significantly deviate from the average speed. To compare vehicles at different speed, the Doppler profile of each vehicle is first normalized w.r.t. to its maximum Doppler shift

$$v_{\text{max}} = \frac{2\hat{v}}{\lambda} . \quad (20)$$

Next the Doppler profile is re-scaled to a common speed of $v = 30 \text{ km/h} \approx 8.33 \text{ m/s}$. The data post-processing for our exemplary truck is shown in Fig. 12. Figure 12(a) shows the PDP as it evolves over distance. A bandwidth of 510 MHz is not sufficient to distinguish the MPCs in the time-domain. A small channel gain increase in the delay range 10 – 30 ns is visible after approximately 5 m. Figure 12(c) shows the corresponding DSD. The additional MPCs from the overtaking truck are clearly visible as negative Doppler shift traces. Note that these traces are already partially demonstrated in Fig. 6. Figure 12(b) shows the respective RMS spread values.

A. STATISTICAL EVALUATION AND DISCUSSION

The results for the whole data ensemble are illustrated in Fig. 13. The bottom panel shows again the number of samples used for the evaluation at each individual position. Note, that the histogram is slightly different to the previous ones. Previously we performed the evaluation on 50λ in space, which equals 30 ms evaluation time exactly only for a vehicle at a speed of $v \approx 8.25 \text{ m/s} = 29.7 \text{ km/h}$.

The RMS delay spread, illustrated in the top panel of Fig. 13, is only slightly affected by an overtaking vehicle. There is only a total swing of 1.5 ns for the median values of the truck. If a truck is close to the RX antenna (at approx. 1 m to 2 m) it shadows the background, boosts the already dominating LOS delay and σ_{τ} is smallest. Cars and SUVs barely alter σ_{τ}. For both vehicle types the median swing is less than 1 ns. Generally, the RMS delay spread values of different vehicles are all in the same order.

The RMS Doppler spread of cars and SUVs at distances close to the antenna (<3 m) is mainly due to phase noise of our equipment. Cars show the strongest effect on σ_{ν} at approximately 3 m to 4 m. SUVs show their maximum a
FIGURE 11: (top) Boxplot of the Rician fading and TWDP fading K-factor. The closer the vehicle to the RX and the larger the vehicle, the stronger are the diffuse components. (middle) Boxplots of the Δ-parameter. The larger the vehicle, the stronger is the second specular component. For example, $\Delta = 0.2$ (for trucks) corresponds to a second specular component that is $20\,$dB smaller than the LOS component, see Fig. 15 in Appendix C. (bottom) Histogram of all samples observed and the TWDP samples. This shows the TWDP selection ratio.

bit later at around 4 m to 5 m. At larger distances the MPC belonging to the overtaking car (SUV) fades out. Note the similarity of σ_ν for cars and SUVs after 6 m. In this region only the rear part of the vehicles is illuminated. Trucks produce an RMS Doppler spread twice as strong as cars and as SUVs. Again, due to trucks’ larger extent the maximum RMS Doppler spread occurs later, at approximately 7 m. Keep in mind, however, that due to the spatial filtering of the horn antenna combined with the existence of a strong LOS, the RMS Doppler spread is less than 12% of the maximum Doppler shift ($\sigma_\nu \leq 0.12\nu_{\max}$). In the median case, σ_ν is even below one-tenth of the maximum Doppler shift ν_{\max}. For comparison, a Doppler shift uniformly distributed in $(-\nu_{\max}, 0)$ yields $\sigma_\nu = \nu_{\max}/\sqrt{12} \approx 0.3\nu_{\max}$, a Doppler shift distributed according to a half-Jakes’ spectrum yields $\sigma_\nu = \nu_{\max}\sqrt{(\pi^2-2^2)/(2\pi)^2} \approx 0.4\nu_{\max}$, and a Doppler shift according to a Jakes’ spectrum even $\sigma_\nu = \nu_{\max}/\sqrt{2} \approx 0.7\nu_{\max}$. Modeling σ_ν with these models is therefore not appropriate. The calculations of the RMS Doppler spread values for known distributions is provided in Appendix D.

VI. CONCLUSION

The size of the overtaking vehicle plays a crucial role for the statistics of the vehicular channel during an overtaking maneuver. Our statistical evaluation of an overtaking process has shown that large-scale fading is essentially only influenced by very large objects such as trucks and buses. Large vehicles potentially increase the receive power through scattering on their side wall by several dB. For smaller vehicles, a change of large-scale fading was not observed.
Rician fading is a good model for small-scale fading, unless a vehicle is in the “bandwidth ellipse” in which case the TWDP distribution provides a better fit. The larger the vehicle, the larger is the Δ-parameter. With the same K-factor, TWDP fading experiences deeper fades than predicted with a Rice distribution.

Furthermore, we have seen that the RMS delay spread is hardly affected by overtaking vehicles. This parameter does not need to be modeled position specific.

The analysis of Doppler dispersion has shown that the increased Doppler effect at millimeter waves is not directly translated to the RMS Doppler spread in our scenario. The RMS Doppler spread is extremely low due to spatial filtering of the horn antenna and the very strong LOS component. Only for large vehicles, this value increases significantly during overtaking. Note that the observed maximum value is a lot smaller than standard models (uniform, Jakes) would predict. The maximum observed RMS Doppler spread is approximately four times larger than the phase noise of our measurement system. A commercial system without “perfect” frequency synchronization or worse reference clocks will very likely not experience this relatively small increase of the RMS Doppler spread at all.

APPENDIX A: ACRONYMS

- AIC: Akaike’s information criterion
- AWG: arbitrary waveform generator
- CDF: cumulative distribution function
- CIR: channel impulse response
- DFT: discrete Fourier transform
- DPS: discrete prolate spheroidal
- DSD: Doppler spectral density
- LO: local oscillator
- LOS: line-of-sight
- LSF: local scattering function
- MLE: maximum likelihood estimation
- mmWave: millimeter wave
- MPC: multipath component
- OEW: open-ended waveguide
- PDP: power delay profile
- PDF: probability density function
- PLL: phase-locked loop
- RF: radio frequency
- RMS: root mean square
- RX: receiver
- SA: signal analyzer
- SNR: signal-to-noise ratio
- SUV: sport utility vehicle
- TWDP: two-wave with diffuse power
- TX: transmitter
- V2V: vehicle-to-vehicle

APPENDIX B: MEASUREMENT SETUP
The hardware setup is illustrated in Fig. 14. Our transmitter consists of an arbitrary waveform generator (AWG). Once
FIGURE 13: (top) Box plots of RMS delay spread as a function of bumper to bumper distance. The position of the overtaking vehicle does not have a strong impact on the RMS delay spread. (middle) Box plots of RMS Doppler spread re-scaled to a common vehicle speed of 30 km/h at the left axis. RMS Doppler spread normalized to the maximum Doppler shift is labelled at the right axis. The black dotted line shows the estimate for the RMS Doppler spread obtained through the phase noise of our measurement system. The RMS Doppler spread of cars and SUVs is only twice as much the values obtained with the phase noise only. In system without “perfect” frequency synchronization or worse reference clocks, the increase might not be visible. (bottom) Number of samples used for the evaluation above based on 30 ms sample lengths.

When a vehicle passes the first light barrier, the AWG is triggered and plays back the baseband sequence and a sample synchronous marker signal. The marker triggers the recording of the receive samples. We directly access the IQ samples at a rate of 600 MSamples/s. From the receive IQ samples we calculate the time-variant channel transfer function $H'[m', q]$ by a discrete Fourier transform (DFT). This transforms the channel convolution into a multiplication in the frequency domain. Here m' denotes the symbol time index and $q = 0, \ldots, 102$ the frequency index. After coherent averaging over N baseband symbols, we divide the resulting channel transfer function by the calibration function, obtained from back-to-back measurements, to equalize the frequency characteristics of our equipment.
from the $Q = 121$ sub-carriers we effectively utilize only $K = 103$ sub-carriers, which is equal to a measurement bandwidth $BW \approx 510$ MHz. With these parameters the delay resolution of the channel sounder is $\tau_{\min} = \frac{1}{BW} \approx 1.96$ ns. The receiver sensitivity is approximated to $P_{RX,\min} = P_{S,\min} + 10 \log_{10}(\Delta f) + 10 \log_{10} K = -63$ dBm.

LINK BUDGET AND OTHER LIMITATIONS

For the LOS component, the propagation loss including antenna gains sums up to $P_L = 75.5$ dB. For the design of our setup, we assume that reflected paths are $P_R = 10$ dB weaker than the LOS component. Next, we require an SNR at each sub-carrier of the reflected component of $\text{SNR}_{\text{refl}} = 10$ dB. These requirements directly translate to the necessary transmit power $P_{TX,\min} = P_{RX,\min} + P_L + P_R + \text{SNR}_{\text{refl}} = 32.5$ dBm. The maximum power of the TX module is 7 dBm. Thus, an additional processing gain of 25.5 dB is needed. The processing gain is realized by coherently averaging over $N = \{480, 560, 640\}$ multi-tone symbols. The number of averaging symbols is chosen such that the averaged channel is still aliasing free. The least processing gain for fast vehicles ($N = 480$) is 27 dB. Remember, our multi-tone system has a sub-carrier spacing of $\Delta f = 4.96$ MHz and a sounding sequence length of $\tau_{\text{sym}} = \frac{1}{\Delta f} = 202$ ns. The overall pulse length including 480 repetitions, sums up to $T_{\text{snap}} = 96.8$ μs. Applying the sampling theorem for the Doppler support, we obtain a maximum alias-free Doppler frequency of $\nu_{\max} = \frac{1}{2T_{\text{rec}}} = 5.2$ kHz, which limits the speed of overtaking cars to $v_{\text{car}} = \frac{(\lambda_{\max})}{2} = 12.9$ $m/s = 46.5$ km/h. This value is sufficient for our measurements, as the street, were the measurements took place, has a speed limit of 30 km/h. Our receiver is limited to a memory depth of approximately 420 MSamples or equivalently, with a sampling rate of 600 MSamples/s, we are recording $T_{\text{rec}} = 720$ ms of the channel evolution. At 12.9 m/s this equals a driving distance of 0.29 m. An overview of the channel sounder parameters is given in Table 1.

APPENDIX C: THE TRANSITION OF TWDP FADING TO Rician Fading

To study the TWDP to Rice distribution transition, we first express the Δ-parameter, defined in (12) through amplitudes, via the power ratio

$$\delta P = \frac{V_2^2}{V_1^2}, \quad V_2 \leq V_1 \Rightarrow \delta P \leq 1.$$ \hspace{1cm} (21)

Equation (12) becomes now

$$\Delta (\delta P) = \frac{2\sqrt{\delta P}}{1 + \delta P}.$$ \hspace{1cm} (22)

The expression (22) is demonstrated in Fig. 15 with δP plotted in decibels. For $\delta P < -20$ dB even an exponential power decrease is barely translated to different Δ values. For $\Delta \to 0$, depending on the K-factor, the second much weaker component might be no longer large enough to

EXCITATION SIGNAL

The excitation signal generated by the AWG is a multi-tone waveform. The use of a multi-tone waveform affords us several advantages such as i) ideally flat frequency spectrum, ii) design flexibility, iii) controllable crest factor, and iv) high SNR through processing gain. These advantages are important for channel transfer function extraction. Using an approach similar to a procedure implemented in [58], the excitation signal is given by $x(n) = \text{Re} \left(\sum_{k=1}^{K/2} e^{j\pi n} e^{-j2\pi kn/96} \right)$, where $n = 0, \ldots, Q - 1$ is the time index and k the sub-carrier index. To minimize the crest factor of the signal, the tone phases are chosen quadratic. The crest factor is reduced in order to maximize the average transmitted power while ensuring that all RF components encountered by the excitation signals operate in their linear regions.

For the geometry of our scenario, the excess length (w.r.t. LOS length) of the MPC resulting from an overtaking car is on the order of 15 m. Ignoring multiple reflections between the parked RX car and the overtaking car, we assume that the path length difference will never be larger than 30 m. Thus, 100 ns is our maximum excess delay. To make the symbols shorter and less susceptible to inter-carrier interference caused by phase noise and Doppler, we choose the sub-carrier spacing Δf as large as possible. To still obey the sampling theorem in the frequency domain, we need to fulfill $\Delta f \leq \frac{1}{2T_{\text{rec}}} = 5$ MHz, where τ_{\max} is the maximum excess delay. With our sampling rate of 600 MSamples/s this gives $Q = 121$ sub-carriers spaced by $\Delta f = \frac{600 \text{ MHz}}{121} = 4.96$ MHz. Due to the sharp (anti-aliasing) filter of the SA,
change the distribution sufficiently from the Rician distribution. Mathematically this is expressed through the variance of the diffuse components. Given that $\Omega \equiv 1$, σ solely depends on the K-factor \cite{59}

$$\sigma^2 = \frac{1}{2(1 + K)}. \quad (23)$$

For $K \gg 0$, the power of the diffuse components (in decibels) is

$$20 \log_{10} \sigma \approx -10 \log_{10} K - 3 \text{ dB}. \quad (24)$$

Hence, TWDP fading differs from Rician fading only if $10 \log_{10} \delta P \gg -10 \log_{10} K - 3 \text{ dB}$, otherwise the second specular component appears as strong as the diffuse components.

This behavior directly translates to the model selection algorithm. To demonstrate this, we run Monte Carlo simulations. To demonstrate this, we run Monte Carlo simulations.

FIGURE 15: The Δ-parameter as a function of the power ratio δP of both specular non-fluctuating waves.

APPENDIX D: RMS DOPPLER SPREAD OF KNOWN DISTRIBUTIONS

In this appendix, we derive the normalized RMS Doppler spread values σ_ν for known Doppler distributions. This yields a reference for our statistical analysis.

a: Uniform Distribution (- left side)
Based on 3D uniform scattering the Doppler spectrum becomes a symmetric uniform distribution. This is simply the left
half of it. Hence, the Doppler is uniformly distributed within \((-\nu_{\text{max}}, 0)\).

\[
\sigma_{\nu}^2 = \int_{-\nu_{\text{max}}}^{0} \frac{1}{\nu_{\text{max}}} \nu^2 d\nu - \bar{\nu}^2 = \frac{\nu_{\text{max}}^2}{12} \tag{25}
\]

\[
\frac{\sigma_{\nu}}{\nu_{\text{max}}} = \frac{1}{\sqrt{12}} \approx 0.2887 \tag{26}
\]

b: Jakes’ Spectrum

This assumes that the angle of arrival is uniformly distributed (in a plane). Through the non-linear cosine relationship between the angle of arrival and the Doppler shift, the Doppler spectrum becomes the “double horn”

\[
P(\nu) = \frac{1}{\pi\sqrt{\nu_{\text{max}}^2 - \nu^2}}. \tag{27}
\]

The RMS Doppler spread is

\[
\sigma_{\nu}^2 = \frac{1}{\nu_{\text{max}}^2} \int_{-\nu_{\text{max}}}^{\nu_{\text{max}}} \frac{1}{\sqrt{1 - \left(\frac{\nu}{\nu_{\text{max}}}\right)^2}} \nu^2 d\nu - \bar{\nu}^2 = \frac{\nu_{\text{max}}^2}{2} \tag{28}
\]

\[
\frac{\sigma_{\nu}}{\nu_{\text{max}}} = \frac{1}{\sqrt{2}} \approx 0.7071 \tag{29}
\]

c: Half Jakes’ (left side)

The half Jakes’ distribution sets all positive Doppler shift to zero. Here, we re-use the result from above. We only need to calculate the mean of a half Jakes’ distribution.

\[
\bar{\nu} = \frac{1}{\pi\nu_{\text{max}}^2} \int_{-\nu_{\text{max}}}^{\nu_{\text{max}}} \frac{1}{\sqrt{1 - \left(\frac{\nu}{\nu_{\text{max}}}\right)^2}} \nu^2 d\nu = \frac{\nu_{\text{max}}}{\pi} \tag{30}
\]

Reusing the result from above, the 2nd moment of the half-Jakes is \(\frac{\nu_{\text{max}}^2}{2} - \frac{1}{2}\). Hence,

\[
\sigma_{\nu}^2 = \frac{\nu_{\text{max}}^2}{4} - \bar{\nu}^2 = \frac{\nu_{\text{max}}^2}{2} \frac{\pi^2 - 2}{(2\pi)^2} \tag{31}
\]

\[
\frac{\sigma_{\nu}}{\nu_{\text{max}}} = \sqrt{\frac{\pi^2 - 2}{(2\pi)^2}} \approx 0.3856 \tag{32}
\]

REFERENCES

A. L. Choch, A. Asadi, G. H. Sim, and M. Hollick, “Mm-wave on wheels: Practical 60 GHz vehicular communication without beam training,” in Proc. of 9th International Conference on Communication Systems and Networks (COMSNETS), 2017, pp. 1–8.

A. L. Choch, A. Asadi, G. H. Sim, and M. Hollick, “Mm-wave on wheels: Practical 60 GHz vehicular communication without beam training,” in Proc. of 9th International Conference on Communication Systems and Networks (COMSNETS), 2017, pp. 1–8.

ERICH ZÖCHMANN (M’18) received the B.Sc. and the Dipl.-Ing. (M.Sc.) degree in electrical engineering (both with distinction) from TU Wien in 2013 and 2015, respectively. From 2013 to 2015 he was a project assistant at the Institute of Telecommunications where he co-developed the Vienna LTE-A uplink link level simulator and conducted research on physical layer signal processing for 4G mobile communication systems. His current focus is on experimental characterization and modelling of millimetre wave propagation. From November 2017 until February 2018, he was a visiting scholar at the University of Texas at Austin. Besides wireless propagation, his research interests include physical layer signal processing, array signal processing, compressed sensing, and convex optimization.

MARKUS HOFER received the Dipl.-Ing. degree (with distinction) in telecommunications from TU Wien in 2013. Since 2013 he is working towards his Ph.D. in telecommunications. From 2013 to 2015 he was with the Telecommunications Research Center Vienna (FTW) working as a researcher in “Signal and Information Processing” department. Since 2015 he is with AIT Austrian Institute of Technology as a junior scientist in the research group for ultra-reliable wireless machine-to-machine communications. His research interests include low-latency wireless communications, vehicular channel measurements, modeling and emulation, time-variant channel estimation, mmWave, massive MIMO, cooperative communication systems and interference management.

MARKUS HOFER received the Dipl.-Ing. degree (with distinction) in telecommunications from TU Wien in 2013. Since 2013 he is working towards his Ph.D. in telecommunications. From 2013 to 2015 he was with the Telecommunications Research Center Vienna (FTW) working as a researcher in “Signal and Information Processing” department. Since 2015 he is with AIT Austrian Institute of Technology as a junior scientist in the research group for ultra-reliable wireless machine-to-machine communications. His research interests include low-latency wireless communications, vehicular channel measurements, modeling and emulation, time-variant channel estimation, mmWave, massive MIMO, cooperative communication systems and interference management.

MARTIN LERCH received his Master degree in electrical engineering from the TU Wien. There, at the Institute of Telecommunications, he is currently developing testbeds and measurement methodologies for controlled and reproducible wireless experiments at high velocities.

STEFAN PRATSCHEK was born in Vienna, Austria, in 1990. He received the B.Sc. degree in electrical engineering in 2014 and the M.Sc. degree with distinction in telecommunications in 2016, both from TU Wien. He is a project assistant at the Institute of Telecommunications at TU Wien since 2013. He is currently working towards his doctoral degree at TU Wien with the main focus on massive MIMO technologies for mobile communications.

LAURA BERNADÓ received her MSc in Telecommunications Engineering from the Technical University of Catalunya (UPC), Spain, in 2007. In 2012 she received her doctoral degree from TU Wien. She currently works at the Austrian Institute of Technology as a Scientist. Her research interests are characterization and modeling of fast time-varying and non-stationary fading processes for ultra-reliable and low-latency communications for future radiocommunication systems.

JIRI BLUMENSTEIN (M’17) received the Ph.D. degree from the Brno University of Technology in 2013. In 2011, he was a researcher with the Institute of Telecommunications, TU Wien. Currently, he is a researcher with the Department of Radio Electronics at Brno University of Technology. He has cooperated with several companies including Racom, Volkswagen, and ON Semiconductor in the area of applied research of wireless systems, and the area of the fundamental research funded by the Czech Science Foundation. His research interests include signal processing, physical layer of communication systems, channel characterization and modeling and wireless system design.

SEBASTIAN CABAN received the master’s degree in business administration from the University of Vienna, Vienna, Austria, and the master’s and Ph.D. degrees in telecommunications from TU Wien. His current research interests include measurements in wireless communications.

SEÚN SANGODOYIN received his B.Sc in Electrical Engineering from Oklahoma State University in May 2007, and the M.Sc and Ph.D in Electrical Engineering from the University of Southern California (USC) in 2009 and 2018 respectively. He is currently a postdoctoral research fellow at the Georgia Institute of Technology. His research interest includes millimeter-wave (measurement-based) MIMO channel modeling and analysis, terahertz communications, UWB MIMO radar, parameter estimation, body area networks and stochastic dynamical systems.

HERBERT GROLL received his B.Sc. and Dipl.-Ing. (M.Sc.) degree in electrical engineering from TU Wien in 2014 and 2017. He is currently working towards the doctoral degree at TU Wien under supervision of Prof. Christoph Mecklenbräuker. His focus is on vehicular wireless communication with emphasis on millimeter wave propagation for future wireless systems.
THOMAS ZEMEN is Senior Scientist at AIT Austrian Institute of Technology, leading the reliable wireless communications group. Previously he worked at FTW Forschungszentrum Telekommunikation Wien, Austria and Siemens Austria. He has authored four books chapters, 37 journal papers, more than 110 conference communications as well as two patents. His research interests focus on wireless ultra-reliable low-latency communications (URLLC), massive MIMO systems, time-variant channel measurements, modeling and real time emulation as well as software-defined radio rapid prototyping. Dr. Zemen is an external lecturer with TU Wien and served as editor for the IEEE Transactions on Wireless Communications from 2011 - 2017.

ALEŠ PROKEŠ received the M.Sc. degree in 1988, the Ph.D. degree in 1999, and the Habilitation degree in 2006, all from Brno University of Technology (BUT). Since 1990, he has been with the Faculty of Electrical Engineering and Communication, BUT, where he is currently a Professor. Since January 2013, he has been the head of the Radio-Frequency Systems Group, part of Research Center of Sensor, Information and Communication Systems. He has (co)authored 30 journal publications and more than 40 conference papers. His research interests include measurement and modeling of channels for V2X communication, optimization and design of optical receivers and transmitters for free space optics (FSO) systems, influence of atmospheric effects on optical signal propagation, evaluation of FSO availability and reliability, higher order non-uniform sampling and signal reconstruction, and software defined radio.

MARKUS RUPP received the Dipl.Ing. degree from the University of Saarbrücken, Germany, in 1988, and the Dr.-Ing. degree from the Technische Universität Darmstadt, Germany, in 1993. Until 1995, he held a post-doctoral position with the University of California at Santa Barbara, Santa Barbara, CA, USA. From 1995 to 2001, he was with the Wireless Technology Research Department, Nokia Bell Labs, Holmdel, NJ, USA. Since 2001, he has been a Full Professor of digital signal processing in mobile communications with TU Wien.

ANDREAS F. MOLISCH is the Solomon Golomb - Andrew and Ema Viterbi Chair Professor at the University of Southern California. He previously was at TU Vienna, AT&T (Bell) Labs, Lund University, and Mitsubishi Electric Research Labs. His research interest is wireless communications, with emphasis on wireless propagation channels, multi-antenna systems, ultrawideband signaling and localization, novel modulation methods, and caching for wireless content distribution. He is the author of four books, 19 book chapters, more than 240 journal papers, 320 conference papers, as well as 80 patents. He is a Fellow of the National Academy of Inventors, IEEE, AAAS, and IET, as well as Member of the Austrian Academy of Sciences and recipient of numerous awards.

CHRISTOPH F. MECKLENBRÄUKER (S’88-M’97-SM’08) received the Dipl.-Ing. degree in electrical engineering from TU Wien, in 1992 and the Dr.-Ing. degree from the Ruhr-Universität Bochum, Bochum, Germany, in 1998, both with distinction. His doctoral dissertation received the Gert-Massenberg Prize in 1998. During 1997-2000, he worked at Siemens AG Austria and engaged in the standardisation of the radio access network for UMTS. From 2000 to 2006, he has held a senior research position with the Telecommunications Research Center Vienna (FTW), Vienna. In 2006, he joined the Institute of Communications and Radio Frequency Engineering at TU Wien as a full professor. During 2009-2016, he lead the Christian Doppler Laboratory for Wireless Technologies for Sustainable Mobility. He has authored approximately 250 papers in international journals and conferences, for which he has also served as a reviewer, and was granted several patents in the field of mobile cellular networks. His current research interests include radio interfaces for peer-to-peer networks (vehicular connectivity, sensor networks), ultra-wideband radio and MIMO transceivers. Dr. Mecklenbräuker is a member of the IEEE, the Antennas and Propagation Society, the Intelligent Transportation Society, the Vehicular technology society, the Signal Processing society, as well as VDE and EURASIP. He is the councilor of the IEEE Student Branch Wien.