

5G RESEARCH AREAS AT CEA-LETI FROM 5G RESEARCH TO 5G PRE-INDUSTRIALIZATION

Dr. Emilio Calvanese Strinati Smart Devices & Telecommunications Strategy Program Director CEA-LETI

Emilio.cavlanese-strinati@cea.fr

SERVING A VARIETY OF 5G WIRELESS APPLICATIONS

Mobile communications Challenges: increasing data rate , future cellular systems, 4A any rate anytime anywhere affordable, reduction of communication energy footprint (GreenCom), monitoring interference and service coverage, heterogeneous networks - HetNets, small cells

⇒ Spectrum efficiency, cooperative communications, HetNets, Femto / Macro RRM, Cognitive radio, Flexible radio systems...

Intelligent Transportation Systems (ITS) Electric Car services, infotainment / entertainment

⇒ QoS system, mobility management, privacy and security, entertainment communication systems, propagation and adaptable antenna systems …

Advanced manufacturing e-agriculture Challenges: factory of the future, increasing competitiveness, new production and management communication systems, robust communication systems (coexistence, interference management), supply chain management

⇒ Wireless sensor networks, robust communication, M2M, RFID/NFC, indoor localization...

Health wellness

Challenges: hospital equipment, management and supply chain support, no-emission wireless communication systems (clean wireless), smart implants, telemedicine, health monitoring, ambient assisted living...

⇒ Body Area Network, Visible Light Communication, in vivo integration, contactless autonomous systems, indoor localisation, very high data rate communication systems, privacy, security...

Smart cities, Smart grid Challenges: infrastructure monitoring, city infotainment services, utility supply chain management, waste collection and management systems, citizen mobiliy assistance, urban smart transportation systems

⇒ Long range sensor network , robust communication, M2M, security and privacy...

KEY 5G TECHNICAL CHALLENGES

leti ceatech

5G TECHNOLOGIES AT CEA-LETI

Antennas optimization Miniature Smart Integration

Chanel propagation modeling Characterization Modeling Emulation

Contactless

Arduous application VHBR (Very High Bit Rate) Power harvestina

Cellular IoT

Physical layers Protocols

Wireless sensors networks (WSN)

Central network Mesh network Specific Scenario

Localization

Radio link Localization algorithms Multi-modality

COMMUNICATION

RADIO LINK DESIGN, OPTIMIZATION & CHARACTERIZATION

> ANTENNAS MINIATURIZATION **& INTEGRATION**

RFID SOLUTION DESIGN FOR HARD ENVIRONMENT

LOCALIZATION & NAVIGATION

5G below 6GHz

Disruptive air interface

Physical layer Protocol stack Platforms

5G above 6GHz (mmW)

New physical layers Evolved protocols

Flexible & **Cognitive radio** Air interface MAC layer Demonstrator

Challenges

Spectral efficiency for communication systems New spectral resources Waveforms, modulation and coding Radio resource management HW/SW architectures

• Fields of expertise

- Wireless digital communication systems
- Study, specification and link/system level simulations (PHY/MAC)
 - Information theory and signal processing
 - Wireless communication protocols
- Algorithm / Architecture analysis and matching
- Hardware and embedded software architectures for real time digital communication systems
- Prototype specification and design for advanced proof of concepts

Main applications

- Broadband wireless systems
- Cellular: 5G (below 6GHz and mmW)
- TVWS and cognitive radio
- Optical wireless communications

• Specific equipments

- Computer grid for intensive simulations
- Lab equipments for prototyping and real time measurement and analysis

Challenges

Spectral efficiency for communication systems New spectral resources Waveforms, modulation and coding Radio resource management HW/SW architectures

• Know how

- Signal processing: modulation, channel coding, equalization, synchronisation, MIMO techniques, multicarrier systems, ...
- Information theory, cooperative communications, network coding
- MAC protocols, Radio Resource management and interference mitigation
- Link Level Simulations (PHY), System level simulations (MAC/RRM)
- Digital wireless solution specification and design (HW/SW design)
- Hardware / software partitioning for real-time wireless systems
- Optimized design with various figure of merit (power consumption, data rate,...)
- Integration with third party HW/SW/Analog
- HW demo with design of custom platforms (HW&SW) & field tests

5G BELOW 6GHz

Capacity increase: x100

- x10 in spectral efficiency: (M)MIMO, Full duplex, out of band radiation
- x10 in densification (access points, connected objects)

atency reduction: /5.

- Content caching,
- Protocols (QoS aware, HARQ)
- Flexible TTI

Consumption reduction: /10

- Network, protocols, components
- PAPR (Peak average power ratio) : 7dB

Reduction of jitter protocol

- Mission critical applications
- Robust PHY layer and guasi deterministic MAC layer

5G ABOVE 6GHz (mmW)

5G Champion

0.6 8 0.5

5G MiEdge

mm MAGIC

New physical layer

- Waveforms: FBMC, BF-OFDM, single carrier
- RF impairments compensation
- Beam forming and tracking: hybrid architecture
- FEC: LDPC
- HW architecture for parallel processing

Evolved protocols

- Mobility: users and access points
- Scheduling for heterogeneous QoS: time / frequency / beam
- Macro-cell off loading and heterogeneous networks
- Interference management:
 - ICIC, Network controlled, Discontinuous transmission, Self-organized network (SON)

Density increase: x100

- ultra dense networks (UDN) and Self Organized networks (SON)
- Advanced interference management schemes
- C-RAN vs D-RAN

New frequency bands:

- x10 in spectrum
- 100Ghz-300GHz
- Adaptation of PHY and RF layers

Throughput increase : x100

- Towards Tbps
- Joint optimization of backhaul/fronthaul/RAN

FLEXIBLE & COGNITIVE RADIO

Approved «Date Approved» IEEE-SA Standards Board Copyright © 2015 by The Isolatore of These Pack Association

9

🚓 😽 👟	Air interface	MAC layer	Demonstrator
	New modulation (FBMC) Advanced receivers: - Oversampled FFT - Channel estimation for from spectrum Spectrum quality indicator - Sensing mechanisms - Interference measurement - Primary user detection	r: Offload/aggregation multi-RAT managen	services Compatibility with IEEE DYSPAN P1900.7 (TV White Spaces) Flexible radio Flexible radio Frequency, band, fragmentation Field trials (ARCEP UHF licence) hent, DSA, LAA
	 Identification of new ba Survey of regulatory actions (2 Primary user detection Definition of a suitable access 	nds 2.3, 3.5 GHz) s to shared spectfree	
	 Exploitation of shared b Aggregation (DL and UL) of th Management of generated int Control and user plane split 	ese bands terferences BBB MHz Contention	Contention access period (CAP) Banang period (SP) best effort troadband traffic access period (CAP) Banang period (SP) IoT, Reliable comm andatory part
	 Extension of the standard to new profiles QoS support for unlicensed bands Contention/scheduled access equilibrium to be integrated in the standard 		e standard for Radio Interface for White Space Dynamic Spectrum A Access Radio Systems Supporting Fixed and Mobile Operation

Industrial valorisation

- Technological transfer of FBMC

LIFI – OPTICAL WIRELESS COMMUNICATION

- Spectral efficiceny increase (bit loading, MIMO)
- Bandwidth increase (RGB LED, micro-LED, Laser sources)

Range: x5

- Optical front-end: lens, collimation
- MIMO processing

Density increase:

- Multi-cell access
- Interference management

EM field covered from 100 MHz to 90 GHz

VHF-EHF band (100 MHz – 18 GHz) Shielded anechoic chamber

On-vehicle antennasAntenna arrays (e.g.

base station, massive

MM-Wave high-gain antennas (e.g. backhaul

leti

Ceatech

EM field covered from 100 MHz to 90 GHz

UHF-SHF band(900 MHz – 40 GHz) Shielded anechoic chamber

Miniature antennas (e.g. user terminal)

Beam-steering antenna arrays

leti

Ceatech

E. Calvanese Strinati

Leti EM field covered from 100 MHz to 90 GHz

OTA EMULATED CHANNEL REPLAY (BELOW 6 GHZ)

Full chain tested under *realistic and controlled channel* models

Evaluation of the impact of antennas, housing (smartphone, tablets, laptops, set-top-box,...), environment

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

5 labs: 200+ people dedicated to telecommunications & RF SoC CMOS integration
 Address manufacturability issues to accelerate the transfer from research to production

FBMC: New 5G modulation for efficient spectrum usage

VLC: Visible Light Communications

Use off-the-shelf LED

MMW HW @ 60 GHZ RADIO FOR USER TERMINAL

60-GHz Transceiver module on HR silicon (CEA-LETI)

- Compact size: 6.5×6.5×0.6 mm3,
- HR silicon integration with integrated antennas
- CMOS transceiver (CMOS 65 nm)

Size : 6.5x6.5x0.6 mm3

Bottom view

Top view

Ref.:Y. Lamy, et al., IEEE Int. 3D Systems Integration Conference (3DIC), Oct. 2-4, 2013.

MMW HW @ 60 GHZ RADIO FOR USER TERMINAL

60-GHz Transceiver module on HR silicon (CEA-LETI)

- Wireless HD std: 7 Gbps (OFDM 16QAM)
- Operates over the 4 IEEE channels between 57 and 66 GHz.

PROTOTYPING KNOW-HOW @ CEA-LETI

Localization & Tracking (Indoor and Outdoor):

Complete SoC (Tx/Rx radio IC + Embedded SW)

Antennas Design

leti

PACKAGING, INTEGRATION, MEMS : A NEED FOR MMW PRE-INDUSTRIALIZATION

8000 m2 clean rooms with state-of-the-art pre-industrial 200-mm micro-fabrication facilities

3D packaging & integration

- Silicon interposer technology
- Passive components and antenna integration

Higher miniaturization

E. Calvanese Strinati

2121

MMW RECONFIGURABLE ANTENNAS EXEMPLE

RF MEMS switches and capacitors (*Ex. for mmW reconfigurable antennas*)

- Low-loss switches
- Low-loss phase-shifters

Leti5G SMART ANTENNA SYSTEMS -INNOVATIONS

- Low-complexity system architectures for beam steering
 - Beam steering transmit array, hybrid beamforming, dynamic tracking algorithm, multi-user beam control
 - High-gain wideband compact antenna
- Proof-of-concept for mm-wave 5G/radar

m-wave charged measurements and 3D m lapping and navigation algorithms

- 100 ns W - 1 GHz

Benchmark of mm-wave personal radar architectures Requirements on system design

Beam tracking transmit array system Switchable radiating source on silicon interposer Tracking algorithm for moving hotspot Long frames and high order modulations

V-band backhauling antenna Requirements on PA output power (photo courtesy of Radiall)

