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Abstract—Connected cooperative and automated mobility
(CCAM) benefits from reliable wireless vehicle-to-everything
(V2X) communication links in safety-critical and time-sensitive
situations. The ego vehicle’s perception, primarily derived from
LIDAR, RADAR, and camera data, is limited by the line-of-sight
(LOS). Sensor information beyond the LOS can be acquired
by reliable V2X communication links from other cooperative
vehicles or infrastructure elements. We identify CCAM use
cases for both real-world applications and test phases, which
stand to gain from understanding spatial reliability regions for
communication links. Frame error rate (FER) classes for these
regions, from the perspective of the ego vehicle, are provided
to aid decision-making for autonomous vehicles. We propose a
testbed architecture for system validation, verification, and test
scenario generation, which integrates FER prediction through a
high-performance open-source computing reference framework
(HOPE). Our study demonstrates that the measured FER within
a city scenario closely aligns with the FER obtained via a
hardware-in-the-loop (HiL) framework and a non-stationary
geometry-based stochastic channel model (GSCM) that utilizes
OpenStreetMap data enriched with event-specific static objects.
We use the GSCM and the HiL framework to overcome the
fundamental limits of estimating the FER in non-stationary
scenarios. As a final demonstration of the HOPE framework,
we achieve an 80% accuracy in predicting the FER class.

Index Terms—ADAS, autonomous vehicles, verification and
validation, ViL, SiL, GSCM, FER prediction

I. INTRODUCTION

The goal of connected cooperative and automated mobility
(CCAM) [1] is to increase road safety and improve traffic
management. An enabler for CCAM is vehicle-to-everything
(V2X) communication. Besides serving as a means to ex-
change information, V2X communication can be regarded as
an additional sensor, thus holding high relevance for advanced
driver assistance systems (ADAS). V2X enriches the vehi-
cle’s perception, enhancing the data foundation for decision-
making.

Autonomous vehicles (AVs) are typically equipped with
various sensors, such as LIDAR, RADAR, and cameras. These
sensors aim to provide AVs with information about their
immediate surroundings, including the position and shape
of nearby objects such as traffic signs, static obstacles, and
other road users. AVs must detect object movement to predict
their trajectories. However, all the aforementioned sensors can

only provide information from the AV’s perspective, rendering
objects hidden from the vehicle’s sensors undetectable.

V2X represents a promising approach to provide missing
complementary information. In this context, other actors, such
as vehicles or road infrastructure, broadcast information. To
accomplish this, they utilize different standards for the phys-
ical layer, such as IEEE 802.11p, IEEE 802.11bd, LTE-V2X,
or 5G-V2X [2]. The most critical information broadcasted
includes a vehicle’s position, direction, and velocity [3]. Some
systems also share detected objects from their own percep-
tion [4]. An AV capable of receiving such information via V2X
can utilize it to extend and complement its own awareness.

Exhaustive testing and validation are crucial to ensure
that all elements of AVs function cohesively, resulting in
successful performance across various scenarios. There are
two possibilities for testing: i) drive tests with a fully equipped
AV and ii) (scenario-based) closed vehicle-in-the-loop (ViL)
tests. Testing and validating ADAS features requires numerous
kilometers to be driven and tackling various challenging traffic
scenarios [5]. Therefore, conducting drive tests is not feasible
during the design and prototyping phase of ADAS features.

On the other hand, ViL tests can be applied in different
development phases [6], and they are conducted in controlled
environments with the ability to replicate critical scenarios. An
example of a ViL testbed is shown in [7]. Here, ADAS features
undergo testing in the form of ViL tests where the vehicle
sensors are stimulated. The authors of [8] propose a simple
software-in-the-loop (SiL) setup for testing and validating
ADAS applications in a simulation environment based on
Autoware [9] and CARLA [10]. Furthermore, some simulation
testbeds also integrate the V2X communication link into the
validation process. Combining different vehicle and traffic
simulation platforms, the authors in [11] test vehicle per-
formance using V2X communications for a motion planning
problem.

However, one essential piece of information missing for
this task is the local V2X communication channel qual-
ity/reliability and therefore, what kind of quality of service
(QoS) can be expected for potential communication between
the AV and other road users. While measuring and simulating
wireless communication channel properties, such as delay and
Doppler spread, is possible with sometimes substantial effort,



predicting these properties in real-time, especially with limited
computing resources available in a vehicle, is highly antici-
pated. The same holds for the inverse problem: automotive
testing, for example, in a DRIVINGCUBE [12] setup, requires
realistic simulation of wireless communication in typical traffic
scenarios. In order to address this missing information, in [13],
we propose a methodology for predicting the frame error rate
(FER) of V2X communication channels. The methodology
in [13] is based on machine learning and requires channel
state information to predict the FER at a desired location.

In summary, both for trustworthy sensor fusion within a
vehicle and for realistic real-time simulation on testbeds,
a fast and realistic computation of channel properties for
V2X communication is needed. In this paper, we introduce
a flexible validation and verification framework that integrates
a closed-loop testbed, i.e., SiL or ViL, together with V2X
communication. This framework enables us to obtain the
FER for a target receiver (Rx) position by calculating the
channel transfer function (CTF) sequence using a geometry-
based stochastic channel model (GSCM), and then applying
the machine learning model proposed in [13].

Scientific Contributions of the Paper:

• We propose a testbed for the validation and verification
of ADAS and AV functionality that takes V2X com-
munication into account. This testbed integrates FER
prediction into its core through the high-performance
open-source computing reference framework (HOPE),
forming a foundation for generating test scenarios for the
identified use cases.

• We present a GSCM that utilizes the OpenStreetMap
(OSM) geometry enriched with event-specific static ob-
jects. We demonstrate the impact of additional objects on
the FER by comparing the FER obtained by emulating
the CTF from the GSCM with the FER measured on the
road.

• We evaluate the neural network module of the HOPE
framework for predicting the FER classes with the CTF
from the presented GSCM, achieving a good match in the
regions of very high and low FER, with a total accuracy
of 80%.

II. CCAM USE CASES

To demonstrate and analyze the impact of providing vehicles
with real-time V2X communication reliability estimations,
we utilize the illustrative example depicted in Fig. 1: an
intersection controlled by a traffic light. Buildings along the
streets significantly disrupt line-of-sight (LOS) connectivity.
Here, we showcase exemplary regions with different FER
ranges, which serve as a reliability measure. The ego car is
traveling from south to north (bottom to top), while the other
car is following a different trajectory. We assume all cars are
equipped with an active CCAM system.

We consider two important use cases, each exemplified
using Fig. 1 when appropriate. The first one is related to the

usage of V2X communication in real-world scenarios, while
the second one relates to test scenarios.

Fig. 1: Exemplary FER distribution at an urban intersection.

A. Use case 1: Prediction-guided Attention in Situations with
Low Communication Reliability

In Fig. 1, the LOS between the two vehicles is obstructed by
a building, resulting in a reduced signal-to-noise ratio (SNR).
This leads to a high FER, indicating that only a few messages
from vehicles in the vicinity of the second car are received
correctly by the ego vehicle. Additionally, the ego vehicle’s
sensors are unable to detect other road users approaching from
the left or right due to the blocked LOS by buildings. The high
FER suggests that traffic-related V2X messages may not be
received. Recognizing the high crash potential if a road user
enters the intersection, the ego car reduces its velocity, thereby
avoiding a potential accident cause.

B. Use case 2: Test Scenario Generation and High-fidelity
Generation of V2X messages in Vehicle Test Environments

Verification and validation of AV in a vehicle testbed setup,
such as the AVL DRIVINGCUBE described in [12], neces-
sitates high-fidelity stimulation of vehicular sensors. Testing
CCAM functionality thus requires the generation of V2X
messages from simulated traffic participants, such as other
vehicles, based on their virtual position and speed relative
to the vehicle under test. Depending on the test goal, which
could involve either testing if the CCAM functionality operates
effectively under optimal conditions or exploring operational
limits, test scenarios must be generated accordingly. Here, FER
prediction enables a significant reduction in the number of
test scenarios by selecting only those scenarios that meet the
aforementioned test goals.

III. TESTBED ARCHITECTURE

We propose a testbed architecture that allows conducting
both ViL/SiL and AV/ADAS testing with respect to V2X
communication. Fig. 2 depicts the testbed architecture. The



Fig. 2: Proposed testbed architecture

testbed does not distinguish between ViL and SiL and there-
fore, both ViL and SiL can be executed in our testbed as
long as both adhere to the publish subscriber communication
principle using the robot operating system (ROS) API [14].
The core of the testbed is represented by the HOPE framework
with its modules, and in this paper, we focus on demonstrating
and evaluating its usage. HOPE encapsulates the ROS com-
munication principles and provides a module architecture for
hot-swapping modules that process data published by the ViL
or SiL system.

In this paper we use a GSCM with FER prediction on top of
HOPE. The ViL/SiL provides sensor data and positions of the
ego vehicles and other road users. HOPE then takes this data
and routes it to its modules, which process the data. Sensor
data are used for the object detection module and later on
for enriching a geometry map. Using this map, together with
the position of the transmitter (Tx) and Rx, we instantiate a
GSCM which in turn provides us with the CTF. The GSCM
is parameterized such that it provides CTFs similar to the
measured ones. These CTFs are then used for predicting the
FER class for the V2X communication assuming a specific
communication standard, e.g., IEEE 802.11p.

A. HOPE

The high-performance open-source computing reference
framework (HOPE) represents a framework that implements
principles for interfacing with ROS-compliant software, es-
sentially implementing wrappers for the publish-subscribe
architecture defined in ROS (version 1 & 2). HOPE introduces
a module system such that different modules can be loaded and
may use the communication principles provided by HOPE to
communicate with other modules orchestrated by HOPE, such
as to send and receive data from external software. For our
purpose, we implement four modules on top of HOPE:

• LIDAR object detection;
• Geometry map with dynamic updates;
• Geometry-based stochastic channel model;
• FER prediction.

In order to receive data from external software, each module
can subscribe to ROS topics using the data broker available
in HOPE. Modules may also publish data under their own
topics, thereby allowing external software to receive data from
modules running on top of the HOPE framework. HOPE is
implemented in Python 3 and is available on https://github.
com/parforme/RELEVANCE-HOPE.

B. Vehicle-in-the-Loop & Software-in-the-Loop Mode

On the lower left side of Fig. 2, an overview of the
SiL test platform is presented. It is based on the industry-
standard and open-source simulator CARLA. It encompasses
various actors: vehicles, pedestrians, sensors, etc., along with
maps that are amalgamated in user scripts, yielding diverse
traffic test scenarios. Maps can be sourced from the default
installation of CARLA, such as CARLA Town, or they can
be imported from OpenStreetMap (OSM).

During simulations, the physical movement of the ego
vehicle is simulated in CARLA, along with all sensors such
as LIDAR, RADAR, and cameras. The sensor data is then
published to HOPE and further utilized by the object detection
module. The detected objects are incorporated into a geometry
map, i.e., an OSM geometry. Based on the results, particularly
on the predicted FER, further decisions and control of the
ego vehicle are executed by CARLA. Other actors in the SiL
or non-playable characters (NPC), which represent other road
participants like vehicles and pedestrians, are also managed by
CARLA. Furthermore, the CARLA API is utilized to retrieve
object types and positions from the simulation, enabling the



Fig. 3: DNN architecture introduced in [13]

feeding of this information into HOPE and subsequently to a
channel prediction module to control the ego’s behavior.

Additionally, at the top left side in Fig. 2, we observe the
setup of the ViL. Here, the ego vehicle is represented by a
ready-to-drive vehicle either on a chassis dynamometer or on
a powertrain testbed (AVL’s DRIVINGCUBE). The vehicle
testbed stimulates relevant sensors, mimicking a realistic test
environment. This includes one or more video screens for
camera-based sensors and the generation of V2X messages
of simulated road users. The computed FER prediction guides
the testbed V2X modem in transmitting only those messages
that would have been received in reality, as described in use
case 2 in Section II.

C. Object Detection Module

Our proposed 3D object detection utilizes the PointVoxel-
region based convolutional neural network (PV-RCNN) [15]
and PointRCNN [16] methods separately from the open-source
library OpenPCDet [17]. PV-RCNN combines voxel-based
convolutional neural network and PointNet-based set abstrac-
tions, resulting in superior accuracy and runtime efficiency.
By inputting LIDAR data into PV-RCNN, it automatically
generates predicted 3D bounding boxes, object categories, and
confidence scores. The detected objects are made available to
HOPE as annotated bounding boxes via ROS and are further
used by the GSCM.

D. FER Prediction

The prediction module is used to obtain the reliability of
the V2X communication in terms of FER. It consists of two
parts: (i) a numerical geometry-based radio channel model
for an accurate representation of the non-stationary radio
communication channels, and (ii) a machine learning-based
prediction of the FER based on the CTF sequences per frame.
In this work, the FER prediction is trained using a dataset with
measured FER obtained by an IEEE 802.11p compliant V2X
modem [18].

1) Geometry-Based Stochastic Channel Model: For model-
ing the radio communication channels we use a GSCM [19].
The geometry of the environment is imported from OSM [20],
while the positions of the Tx and the Rx are obtained via GPS.
The time-variant frequency response represents the summation
of different contributions of the propagation paths: LOS be-
tween Tx and Rx, static discrete (SD) scatterers, e.g. traffic
signs and lights, mobile discrete (MD) scatterers and diffuse
(D) scatterers.

The OSM data lacks information about dynamic objects
or recent infrastructure and environmental changes, such as
parked or moving road vehicles or larger roadside installations
(i.e., construction sites, etc.). These objects, as well as other
missing objects and buildings, can be detected using data from
vehicle sensors (i.e., LIDAR, RADAR, cameras). To detect
dynamic and missing objects, we utilize the object detection
module of HOPE (cf. Fig. 2).

2) Frame Error Rate Prediction: For the real-time predic-
tion of the wireless V2X communication FER, we use a DNN.
In general radio channels are non-stationary, but for a limited
spatial region we may assume wide-sense stationarity (weak
stationarity) [21], [22]. These regions are called stationarity
regions.

As a specific machine learning algorithm, we implement a
deep neural network (DNN). Assuming that a CTF sequence
will be locally available information in the vehicle, we use
it as an input vector for the DNN. For training the DNN, we
utilize the CTF sequences generated from the GSCM described
above. Since we are interested in obtaining reliability regions
around the vehicle, we approach the FER prediction as a
classification task. A detailed description of the FER prediction
using the DNN, as well as the dataset collection, is provided
in [13], and the architecture of the DNN is illustrated in Fig. 3.

IV. TESTBED EVALUATION

A. Geometry-Based Stochastic Channel Model

To illustrate the principle of the testbed and the impact of
enriching geometry with observed static objects (by the ego
vehicle) on the FER, we utilize already identified objects from
a measurement campaign presented in [23]. We consider a
V2V scenario where two cars approach each other and intend
to share traffic information. Fig. 4 depicts the parsed OSM
data without detected objects (left) and with detected objects
(right), respectively.

We observe that in the original OSM, no SD scatterers are
included. We identify the following additional objects: parked
cars, city lamps, trees, and buildings, and incorporate them
during runtime, for instance, via ROS messages conveying a
description of the objects. We calibrate the GSCM using the
radio channel data recorded by the AIT multi-node channel
sounder [24] during the measurement campaign. The GSCM
parameters for the propagation path computation and point
scatterer distribution [25] are summarized in Table I. We model
the deterministic amplitude of the LOS component as well as
other scatterers using the log-distance path loss model [26],
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Fig. 4: Scenario map (a) geometry directly obtained by OSM data and (b) geometry enriched with detected objects.

where G0 is the Rx gain at a reference distance, and np

denotes the path loss exponent. For modeling the stochastic
amplitude of the LOS component and SD scatterers we use a
Gaussian function, with µσ as variance of the gain and dc
as the coherence distance. Diffuse scatterers are uniformly
distributed and placed along buildings. To reduce the number
of diffuse scatterers we employ the locality-sensitive hashing
scheme adapted in [19].

Parameter Description LOS SD D

G0 [dB] reference Rx power −1 −70 −10
np path loss exponent 2.2 1.5 2.5
µσ [m] mean variance of the

stochastic amplitude
gain

1 3.1 -

µc [m] mean coherence dis-
tance

1.2 4.9 -

dmin
c [m] minimum coherence

distance
1.4 1 -

χD [m−1] scatter point density - - 0.5
wD [m] maximum scatterer

distance
- - 0.5

TABLE I: GSCM parameters for the line-of-sight (LOS) com-
ponent, static discrete scatterers (SD), and diffuse scatterers
(D).

Fig. 5a depicts the power delay profile (PDP) and Doppler
spectral density (DSD) from the measured CTF that are
acquired with a sampling time of TS = 500µs [23]. In Fig. 5b
the GSCM simulation with the OSM geometry is shown,
where we notice strong components between approx. 5−10 sec
and again between approx. 32 − 38 sec that are not present
in the measurement data. We find that these components are
caused by reflections/diffuse scattering mainly from the big
building in the south of our environment (cf. Fig. 4a). Adding

the additionally identified buildings, blocks these reflection
paths (cf. Fig. 4b) and we obtain a better match between the
measurement and the GSCM simulation in Fig. 5c.

B. FER Evaluation with Hardware-in-the-Loop Framework

The hardware-in-the-loop (HiL) framework connects a Tx
and Rx via radio channel emulator [27]. The Tx and Rx
are two IEEE 802.11p [18] compliant Cohda Wireless MK5
modems [28], exchanging ITS-G5 compliant data frames.
These are the very same modems that have been used in the
aforementioned measurement campaign [23].

The channel emulator needs a CTF sequence with a sam-
pling time of 50 ns, which is obtained via interpolation, as
explained in [27], either from the measured CTF or from the
numerically computed CTF using the GSCM. The Tx modem
is set to send 1500 frames per second with a length of 100
bytes. We choose a window of 1 s to evaluate the FER.

Fig. 6 plots the FER γmeas versus time from the measured
data, the FER γGSCM,2 for the GSCM data using the OSM
geometry (Fig. 4a), and the FER γGSCM,1 using the OSM
geometry with additional objects (Fig. 4b). We notice a good
match in high and low FER regions. However, in the transition
regions, from non-LOS (NLOS) to LOS and vice versa,
we obtain a noticeable difference between the FER without
additional/dynamic objects (γGSCM,2). This is mainly due to
missing buildings, highlighted in Fig. 4b, which block the
signal between the Tx and Rx. This we can also see in Fig. 6
where γGSCM,1 matches the measured FER also in transition
regions.

Furthermore, we calculate the Jeffreys interval [29] as a 95%
of the credible interval of the FER estimated by the HiL frame-
work and the GSCM data with additional objects. We model
the process of sending a frame as an independent Bernoulli
process as we assume that only mission critical information
is exchanged, only spanning a single frame. Therefore, the
FER follows a binomial distribution, where the number of
observations is the number of transmitted frames Ψ = 1500,
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Fig. 5: Time-variant PDP and DSD: (a) Measurement, (b)
GSCM simulation with OSM geometry, (c) GSCM simulations
with OSM and additional detected objects.

Fig. 6: FER comparison: FER γmeas obtained directly on
the road, FER γGSCM,1 obtained by emulating CTF from the
GSCM in the case when all identified objects are included,
and FER γGSCM,2 obtained by emulating CTF from the GSCM
in the case when only objects from OSM are included. The
violet region indicated the 95% confidence interval (CI) of the
binomially distributed FER.

the number of successes is the number of lost frames L and
the probability of successes is unknown. The results are shown
as a shadowed area around γGSCM,1. We notice that Jeffreys
interval is very small in the regions of the high FER, while it
becomes wider when a small number of frames is lost, i.e. in
the low FER regions.

C. DNN based FER evaluation

Before evaluating the FER obtained from the DNN, we
briefly review the solution to the problem of measuring the
FER in non-stationary communication channels, introduced
in [13].

1) Frame Error Rate Measurement Method for Non-
stationary Propagation Conditions: The spatial extent of
stationarity regions Dstat is measured in a multiple of the
wavelength λ = c0/fC and depends on the propagation
environment, here c0 denotes the speed of light and fC the
carrier frequency. Given the vehicle velocity v we can compute
the stationarity time Tstat = Dstat/v. For the chosen urban
scenarios [30] found Tstat < 100ms.

The duration of a frame Tframe is defined by the bandwidth,
bit rate, and frame length in terms of bytes. Hence, within a
stationarity region only a finite number of frames

Ψ = ⌊Tstat/Tframe⌋ (1)

can be transmitted. In [13] we introduced a methodology
to overcome this fundamental limitation for non-stationary
propagation conditions. A GSCM computes the CTF using
a finite number P of propagation paths that are defined by
path weight ηp, normalized Doppler shift νp and normalized



delay θp, with p being the path index p ∈ {1, . . . , P − 1}.
Hence, keeping these propagation path parameters fixed we
can extend the fading process of a stationary region as long
as needed.

2) Evaluation Results: We use the FER obtained from the
HiL framework as our ground truth. We extend each stationary
region s ∈ {1, . . . , S} such that we can transmit Ψ = 20000
frames. The FER result γGSCM,1[s] versus time is presented by
a solid line in Fig. 7. In order to evaluate the usefulness of
the aforementioned methodology, we calculate the 95% con-
fidence interval and show the results with the violet regions.
With many more frames available for FER estimation, we can
see that the confidence interval has improved in the low FER
regions. Hence, we can overcome the fundamental limits of
FER estimation within a non-stationary fading process.

Furthermore, we use the CTF sequence obtained by the
GSCM for stationarity region s as input to our DNN. The
output of the DNN is one of N classes for the predicted FER,

cn := (xn,1, xn,2], (2)

where n ∈ {1, .., N} defined as
• class 1: c1 := (0, 5 · 10−4],
• class 2: c2 := (5 · 10−4, 10−1],
• class 3: c3 := (10−1, 5 · 10−1],
• class 4: c4 := (5 · 10−1, 1].

We compute the accuracy of the DNN prediction

ak =
Mk

S′
· 100% , (3)

for a time interval [∆(k − 1),∆k), with ∆ = 1 s containing
S′ = ∆/Tstat = 10 stationarity regions. Here, Mk denotes the
number of correctly predicted classes per time interval. This
result is depicted as colormap in Fig. 7.

We obtain a high accuracy in the region of very high FER
(class 4) and of very low FER (class 1), while the accuracy
in the NLOS/LOS transition regions is reduced. However,
the DNN has been initially trained with data from a V2I
scenario only. Therefore, the training data lacks CTFs which
include those transition regions of V2V scenarios. We obtain
an overall accuracy of 80%. If we exclude the fast NLOS/LOS
transitions we obtain an accuracy of 87%.

V. CONCLUSION

In this paper, we describe a testbed that supports testing and
validation of V2X communication for ViL and SiL ADAS
testing and verification. We identify use cases where V2X
communication plays a key role for ADAS. The testbed we
propose allows the identification of critical scenarios reducing
the number of test cases for scenario based testing and
validation of ADAS features. Using the HOPE framework,
we integrate a GSCM which uses OSM data enriched by
dynamically detected objects from the vehicles’ sensors. We
evaluate the core of the testbed by showing that objects
detected on the fly have a significant impact on the resulting
FER. The results show that having an accurate geometry
map is crucial for correctly modeling the radio channel and,

Fig. 7: Accuracy of the predicted FER per second. The
prediction is done using the DNN and the CTFs generated
from the GSCM with identified objects. The violet region
indicated the 95% confidence interval (CI) of the binomially
distributed FER.

therefore, obtaining a realistic FER. Finally, we include the
FER prediction module in the evaluation of HOPE and obtain
a total accuracy of 80% with very high accuracy in the
NLOS and the LOS cases even though the used DNN has
been initially trained using data from a V2I scenario. This
module enables us to extend the FER range and overcome the
fundamental limits of FER analysis in non-stationary safety-
critical scenarios.

VI. ACKNOWLEDGMENT

The authors of this work have received funding by the
Austrian Research Promotion Agency (FFG) and the Austrian
Ministry for Transport, Innovation and Technology (BMK)
within the project RELEVANCE (881701) of the funding
program transnational projects, by the European Commission
within the European Union’s Horizon 2020 research inno-
vation program funding ECSEL Joint Undertaking project
AI4CSM under Grant Agreement No. 101007326 within the
project DEDICATE (Principal Scientist grant) at the AIT
Austrian Institute of Technology, and from the ECSEL Joint
Undertaking (JU) under grant agreement No. 101007350
(AIDOaRt project). The JU receives support from the Euro-
pean Union’s Horizon 2020 research and innovation program
and Sweden, Austria, Czech Republic, Finland, France, Italy,
Spain.

REFERENCES

[1] Cooperative, Connected and Automated Mo-
bility. [Online]. Available: https://transport.ec.
europa.eu/transport-themes/intelligent-transport-systems/
cooperative-connected-and-automated-mobility-ccam en

[2] W. Anwar, S. Dev, A. Kumar, N. Franchi, and G. Fettweis, “PHY
abstraction techniques for V2X enabling technologies: Modeling and
analysis,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2,
pp. 1501–1517, 2021.



[3] ETSI, “ETSI EN 302 637-2 v1.4.1 - Intelligent transport systems
(ITS); Vehicular communications; Basic set of applications; Part 2:
Specification of cooperative awareness basic service,” 2019.

[4] ——, “ETSI TR 103 562 v2.1.1 - Intelligent transport systems (ITS);
Vehicular communications; Basic set of applications; Analysis of the
collective perception service (CPS); Release 2,” 2019.

[5] P. Junietz, W. Wachenfeld, K. Klonecki, and H. Winner, “Evaluation of
different approaches to address safety validation of automated driving,”
in 21st International Conference on Intelligent Transportation Systems
(ITSC), Hawai, USA, November 2018.

[6] S. Hallerbach, Y. Xia, U. Eberle, and F. Koester, “Simulation-based iden-
tification of critical scenarios for cooperative and automated vehicles,”
SAE International Journal of Connected and Automated Vehicles, vol. 1,
no. 2018-01-1066, pp. 93–106, 2018.

[7] C. Galko, R. Rossi, and X. Savatier, “Vehicle-hardware-in-the-loop
system for ADAS prototyping and validation,” in International Con-
ference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), Samos, Greece, July 2014, pp. 329–334.
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