
Learning Without Forgetting: Predicting the
Reliability of V2X Wireless Communication
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Abstract—Effective communication between vehicles and road
users is essential for reducing accidents and congestion. Reli-
able wireless communication is crucial for decision-making in
advanced driver assistance systems and autonomous vehicles. In
this work, we propose a convolutional neural network to predict
the frame error rate in vehicle-to-infrastructure scenarios. Using
a geometry-based stochastic channel model and hardware-in-
the-loop emulation, we generate a dataset on which our model
achieves 90% validation accuracy. To adapt the model to
new data, such as vehicle-to-vehicle scenarios, and to reduce
computational costs for retraining the entire model from scratch,
we explore methods like fine-tuning, transfer learning, and
learning without forgetting (LwF). While these methods improve
performance on new data, they reduce accuracy on the original
data. To address this, we modify LwF by including some original
data, achieving a balanced accuracy of 81.96%.

Index Terms—frame error rate, geometry-based stochastic
channel model, convolutional neural network, learning without
forgetting

I. INTRODUCTION

Vehicle-to-everything (V2X) communication enables au-
tonomous vehicles (AVs) to perform reliably even in areas
where other sensors like LIDAR, RADAR, or cameras may
fail, primarily due to non-line-of-sight (NLOS) conditions.
By exchanging environmental data and information about
the position and velocity of vehicles, road safety can be
significantly improved and traffic congestion reduced [1]. For
the control and decision-making system of AVs to utilize
this information, reliable communication must be guaranteed.
Estimating and predicting the reliability of wireless commu-
nication channels, i.e., in terms of the frame error rate (FER),
is key in many aspects. Predicting the FER is important for
(a) determining how often important information has to be
broadcast such that it is received with high probability within
a certain urban area, (b) generating meaningful V2X test
scenarios for verification and validation of advanced driver
assistance systems (ADAS) relying on information received
via V2X communication.

The FER in V2X scenarios, where the radio channels are
time-varying and non-stationary [2], [3], [4], depends on
different channel characteristics, transmitter (Tx) parameters,
and receiver (Rx) architecture. Therefore, in [5] we propose
a FER lookup table based on five condensed channel pa-
rameters, while in [6] we use the channel transfer function
(CTF) of a stationarity region to predict the FER via a deep

neural network (DNN). The network is trained on vehicle-to-
infrastructure (V2I) scenarios. The CTFs are obtained using
a geometry-based stochastic channel model (GSCM), and the
FER labels are measured via a hardware-in-the-loop (HiL)
framework for a specific implementation of the IEEE 802.11p
standard [7]. With this dataset generation setup, we are able
to measure the FER of a stationarity region with an accuracy
that does not depend on the length of the stationarity region.
Despite the good results, we noticed that the trained network
does perform poorly on other V2X communication scenarios,
i.e., vehicle-to-vehicle (V2V), although one may assume that
channel state information obtained in both scenarios may
be similar, the scenarios differ significantly in terms of
electromagnetic wave propagation conditions.

Our goal is to eventually deploy a pre-trained network into
V2X hardware or on the engine control unit. Therefore, it
is not feasible to retrain the neural network each time new
data samples are available. In this paper, we investigate well-
established adaptation methods such as transfer learning [8],
fine-tuning [9], and learning without forgetting [10]. Transfer
learning is already used for different problems in wireless
communications [11]. In [12], transfer learning is used to
predict the quality of channels in commercial 4G networks
where limited data is available. Also, it is applied to channel
state information based positioning in time-variant channels,
where the knowledge from one environment is transferred to
another [13], [14]. Furthermore, the authors in [15] use trans-
fer learning for automatic modulation classification in time-
variant channels and show how it reduces the computational
complexity by training only some of the model parameters.

In summary, we aim to maintain a high prediction accuracy
in already trained scenarios (V2I) while also adapting to new
scenarios (V2V). First, we improve our DNN described in [6]
by including convolution layers obtaining a higher accuracy
in V2I scenarios. Second, we want to generalize the trained
convolutional neural network (CNN) to V2V scenarios. How-
ever, the methods mentioned above do not work very well
for our purpose. Initially, we train our neural network with a
large dataset but for adapting to another scenario only a small
number of samples are available. Therefore, in this paper, we
propose a modified learning without forgetting method that
outperforms existing ones and shows promising results in our
scenarios.



Scientific Contributions of the Paper:
• We design a CNN for predicting FER classes signifi-

cantly improving the accuracy in V2I scenarios, finally
reaching an overall accuracy of 90% and strong improve-
ments in the NLOS-LOS transition regions.

• We investigate well-established model adaptation meth-
ods to incorporate V2V scenarios while keeping compu-
tational and implementation complexity low. We present
a variant of learning without forgetting that maintains
accuracy in previously trained scenarios but allows adap-
tation to new scenarios.

II. NEURAL NETWORK AND BASELINE FER PREDICTION
FOR V2I SCENARIOS

Despite the continuous nature of the FER as a measure
of reliability of the wireless communication channel, we
define the prediction of the FER as a classification task,
where each class represents a FER region. We justify this by
investigating the FER for different scenarios of the publicly
available dataset described in [16]. The analysis reveals that
FER regions provided in Table II cover the dynamics of the
FER in most of the scenarios [6]. In this paper, we employ the
V2I dataset introduced in [6]. It consists of channel informa-
tion of each stationarity region for V2I scenarios which are
generated from our GSCM and a stochastic channel model.
The corresponding labels, i.e. the FER classes, are obtained by
measurements performed with the HiL setup presented in [7],
which consists of a wireless channel emulator [17] and two
IEEE 802.11p compliant Cohda Wireless modems [18]. The
parameters for the HiL setup are summarized in Table I.

For the task of predicting the FER, given the channel
impulse response (CIR), we utilize a CNN with a dense
part for classification. The convolutional layers represent the
feature extraction and by cascading them one learns to extract
features at different abstraction levels [19] from the input data.

The CIR is represented as a two-dimensional complex
valued matrix I ∈ CM×P , where one dimension M = 200
corresponds to time samples, and the other, P = 41, to
delay samples. We split the complex values of the CIR into
real and imaginary parts, obtaining an input tensor XCIR

j,k,l of
rank three, with dimensions (2, 200, 41). We cascade five
convolutional layers, while saving the output of each convo-
lutional layer, as is shown in Fig 1. For our two-dimensional
input (real and imaginary parts are treated separately), the
convolution operation is given by

S(i, r) = (I ∗K)(i, r) :=
M∑

m=1

P∑
p=1

I(m, p)K(i−m, r− p),

(1)
where we call S a feature map, I denotes one channel of
the input sample, and K denotes the kernel. The kernel
sizes of the convolutional layers have been chosen such that
the neural network learns to extract delay-varying and time-
varying information. After the last convolutional layer, we
flatten all feature maps and forward them to the dense layer
part where we learn to classify the CIR according to the

prescribed FER classes. The dense part of our networks has
been take from [6] where we have shown its capability to
predict FER classes.

Parameter Value
Transmit power, PTx 10 dBm

Modulation and coding rate QPSK, 1/2
Number of frames, F 20000

Frame size 100 bytes
Frame rate 2200 frames/s

Stationarity time, Tstat 100ms
Bandwidth, channel emulator 10MHz

Time spacing, channel emulator 50 ns
Frequency spacing, channel emulator 156.25 kHz

TABLE I: Parameters used for measuring the FER via HiL
framework.

The CNN is trained on 70% of the V2I dataset which
consists in total of 15196 samples. The remaining 30%
are used for model validation. For training the CNN we
employ the Adam optimizer [20] with a learning rate of 10−4.
Training is performed on a batch level, utilizing a batch size
of 10 for the training dataset and 8 for the validation dataset.
The cross-entropy loss function is used to optimize model
performance. We achieve a total accuracy of 90.14% on the
validation dataset. We notice that adding the convolutional
layers gained us an improvement of 4% compared to the
dense model from [6]. Most notably, we achieve an improved
accuracy in classes γ2 and γ3. These classes cover the NLOS-
LOS transition regions. The accuracy per class is shown in
Table II.

Accuracy
Class [6] CNN

1: γ1 := (0, 5 · 10−4] 84.73% 90.61% (+5.88%)
2: γ2 := (5 · 10−4, 10−1] 78.42% 83.93% (+5.51%)
3: γ3 := (10−1, 5 · 10−1] 77.38% 86.10% (+8.72%)
4: γ4 := (5 · 10−1, 1] 95.47% 96.88% (+1.41%)

TABLE II: Accuracy per class of the validation dataset.

III. THE V2V SCENARIOS AND ITS DATASET

For the V2V scenarios, we use the publicly available
dataset [16], which is available at https://nextg.nist.gov/.
From this dataset we select two V2V measurements, V2V
scenario 1 (sc1) and scenario 2 (sc2). V2V sc1 represents
an urban environment on a small road located behind the
AIT building in Vienna. The data for V2V sc2 has also been
collected in the near vicinity of the AIT building, but on a
four lane road. Fig. 2 shows the trajectories of the vehicles
in both scenarios. In both cases, the vehicles approach each
other, and while in V2V sc1 the maximum velocity is 30 km/h,
in V2V sc2 the maximum velocity is 50 km/h. The wireless
channel measurements are conducted at a carrier frequency
of fC = 5.9GHz, with a bandwidth of B = 150.25MHz



Fig. 1: Proposed CNN architecture.

(subcarrier spacing ∆f = 250 kHz), and a snapshot duration
of Ts = 500µs. These measurements are further used for
GSCM modeling and CIR generation for these environments.
The procedure of modeling the wireless channel with our
GSCM, as well as the GSCM parameters for the V2V sc1
has been discussed in [21]. For V2V sc2, we slightly adapt
the GSCM parameters, namely: the reference Rx power, G0

for the LOS component and diffuse scatterers is −7 dB and
−20 dB respectively, and the path loss exponent np for the
LOS component is 1.8 and for diffuse scatterers we use
3. Like in [6] we obtain the FER for stationarity regions
with a duration of 100 ms. The parameters for the IEEE
802.11p compliant V2X modems are the same as for the data
acquisition of the V2I dataset.

We merge the data generated and labeled for the two
scenarios, V2V sc1 and V2V sc2. The dataset contains the
CIRs for each stationarity region and the corresponding FER
obtained with the HiL framework [7]. Their overall duration
is 50 and 60 s respectively, but for half of its duration
the vehicles have no line of sight. This results in a high
FER belonging to class γ4 for half of the total number of
stationarity regions. We balance the dataset by using only
30 s around the passing point for both scenarios. This leaves
us with 600 new samples. We split this dataset into training,
test and validation parts with a ratio of 60 − 20 − 20%.
These datasets are also balanced to ensure that each class
is represented by the same percentage across the training,
validation, and test datasets for both scenarios.

IV. MODEL ADAPTATION

The V2I and V2V scenarios differ significantly in terms of
electromagnetic propagation conditions [22], despite the data
for both scenarios being collected in the same urban area.
Therefore, our goal is firstly to predict the FER also for inputs
originating from a V2V communication scenario. Secondly,
the accuracy in V2I scenarios shall remain high. Thirdly, for
practical feasibility, we would like to only use training data
from the new scenario and obtain good accuracy with a small
number of training epochs. In the following, we study how
fine-tuning, transfer learning, and learning without forgetting
perfrorm in our case. For this we consider the model in Fig. 1
trained for the V2I scenario denoted by MV2I : X → S,
mapping a sample x ∈ X of our input space to s ∈ S, where
S is the set of distributions over our FER classes. In our
case the model is not altered as the task of classifying the
FER w.r.t. the four classes (cf. Table II) remains the same.
We further denote by MV2V the model trained using the
V2V dataset only. We will express the dependence of the
V2I model on the learnable/trainable parameters θ ∈ RN by
MV2I( · ; θ). We apply the aforementioned learning methods
as follows.

1) Fine-tuning: Here, we start with the pre-trained model
MV2I and assume that the feature extraction (convolutional
layers) remains the same for the new scenario. This is
equivalent to stating the hypothesis that the learned kernels
also extract meaningful features for the new scenario. Hence,
we freeze the convolutional layers excluding them from the
stochastic gradient descent updates. Since the dense part



48°16'08"N

48°16'09"N

48°16'10"N

48°16'11"N

48°16'12"N

La
tit

ud
e

16°25'35"E 16°25'40"E
Longitude

Land NÖ, BEV, Stadt Wien/City of Vienna, Maxar, Microsoft
50 ft 

20 m 

Tx
Rx

Passing point

(a) V2V sc1

48°16'N

48°16'05"N

48°16'10"N

La
tit

ud
e

16°25'20"E 16°25'30"E 16°25'40"E
Longitude

Land NÖ, BEV, Stadt Wien/City of Vienna, Maxar, Microsoft
200 ft 

50 m 

Tx
Rx

Passing point

(b) V2V sc2

Fig. 2: Scenarios and trajectories used for V2V scenarios.

of our network is responsible for learning the classification
which we assume to be scenario dependent. We further freeze
specific dense layers and denote the models by M2:4 and
M4:5, respectively, where the subscript denotes which and
how many dense layers have been frozen. The parameters of
the remaining layers are initialized randomly.

2) Transfer Learning: Similar to fine-tuning, certain layers
of MV2I are frozen and remain unchanged during subsequent
training. We freeze all convolutional layers and we add new
dense layers specific to the new task, effectively replacing all
layers greater or equal than layer 5 (cf. Fig. 1). Here, we
add the following fully connected dense layers with rectified
linear unit (ReLU) activation functions in between: (Ah, Bh) :
(128, 64), (64, 32), (32, 16) and denote the model by MTFL.
The remaining dense layers remain untouched and we start
with the already trained parameters. We train the network
using the V2V dataset only.

3) Learning without Forgetting (LwF): Introduced in the
seminal work of Li et al. [10], the concept is to take a
trained network, add or extend specific layers fulfilling the
requirements of the new task at hand and continue training
with the new dataset only. The key idea of LwF is that

during training a combined loss of the initial model and the
model under training is used. In this work, we adapt the
original method presented in [10]. Let XV2V ⊂ X be our new
training data with the corresponding labels YV2V ∈ NM×4,
let θV2I ∈ RN denote the trained parameters using the V2I
dataset. Further, let floss and gloss be two loss functions,
preferably with the same range. Algorithm 1 briefly out-

Algorithm 1 Modified Learning without forgetting
Input: (XV2V, YV2V), MV2I, θV2I, α, floss, gloss, Nepochs
Output: θV2I,V2V

1: θ1 = θV2I; i = 1
2: for j = 1 to Nepochs do
3: for each batch BV2V ⊆ XV2V do
4: θi+1 = SGDStep(αfloss(MV2I(BV2V; θi), YV2VBV2V

)+
(1− α)gloss(MV2I(BV2V; θi),MV2I(BV2V; θ1)))

5: i = i+ 1
6: end for
7: end for
8: return θi

lines the training procedure. The stochastic gradient descent
update (SGDStep) is done using a convex combination of
losses. The learning without forgetting parameter α ∈ [0, 1]
allows to steer how strong the impact of the loss for the
new scenario floss(MV2I(BV2V; θi), YV2VBV2V

) is when updat-
ing the model parameters. Choosing a small α puts more
emphasis on gloss(MV2I(BV2V; θi),MV2I(BV2V; θ1)), where
MV2I(BV2V; θ1) denotes the prediction of the baseline given
V2V input data. The rationale is, depending on α, either we
learn faster from new data or we try to keep already learned
weights but try to explore new weights improving the loss
on the new dataset. In the first iteration the contribution of
gloss will be zero, thus allowing to step away from the learned
weights θ1.

We further propose to adapt α using the gradient of the
losses, ∇floss and ∇gloss as follows

α :=
1

C
√
n

∥∥∥∥∥∥
|BV 2V |∑
i=1

∇θfloss(xi)

∥∥∥∥∥∥
√
n

l2

,

where

C =

∥∥∥∥∥∥
|BV 2V |∑
i=1

∇θfloss(xi)

∥∥∥∥∥∥
l2

+

∥∥∥∥∥∥
|BV 2V |∑
i=1

∇θgloss(xi)

∥∥∥∥∥∥
l2

,

here n denotes the current epoch. In the case of training using
batch gradients, we use the mean of gradients evaluated at
the samples in BV2V. The more epochs we train, the harder
it becomes to achieve improvements in a new scenario. We
call learning without forgetting using a convex combination
of the losses as α-LwF and with adaptive α A-LwF. For
both loss functions, we use the cross-entropy. However, the
proposed LwF uses the knowledge distillation loss [23] for
the old task. It represents the modified cross-entropy, which
has the intention to reduce the gap between the probabilities



of correct and wrong classes. Hence, the probability of each
class is calculated as:

qj =
exp (zj/T )∑
j exp (zj/T )

, (2)

where zj represents the predicted vector and T is the so
called temperature. For higher values of T the probability
distribution over classes becomes softer. We denote this
method by DL-LwF.

4) Learning without Forgetting with partial old data:
Similar to LwF, except that we introduce the loss on the old
dataset (V2I) during training for the new data. We consider
a subset of the old dataset (X ′

V2I, Y
′

V2I) ⊆ (XV2I, YV2I). The
subset is chosen such that it includes the same proportion
of samples for each class relative to the number of samples
available for each class. We modify gloss loss in Algorithm 1
accounting for the samples from the old dataset which then
reads gloss(MV2I(X

′
V2I; θi), Y

′
V2I). It calculates the loss of the

prediction on old data when updating the model parameters.

A. Results

We evaluate the different training methods with respect to
the accuracy in each scenario and the combined accuracy. For
each of the models/training methods, we select a reasonable
number of epochs. We summarize the obtained results in
table III for each case, respectively. Training our model on
the single datasets yields an acceptable accuracy in the V2I
and V2V scenarios, respectively. But, the performance in the
other scenario is in both cases not acceptable. We observe
that the accuracy for V2V data under MV2I is higher than
the accuracy of V2I data under MV2V. This discrepancy is
due to the small amount of V2V data we used for training
MV2V. The results using fine-tuning are also not convincing.
Freezing the dense layers two to four M2:4 and training with
the V2V dataset heavily tends to improve V2V accuracy but
diminishes V2I accuracy. The same holds for freezing layers
four and five of the dense layers M4:5. Starting with MV2I
and applying transfer learning MTFL, we end up with worse
performance than fine-tuning and training from scratch on the
V2V dataset. For reference, we also train the proposed neural
network with V2I and V2V together, denoted by MV2V&V2I.
We notice that merging the two datasets increases the V2I
accuracy compared to MV2I. LwF, like introduced in [10]
using the knowledge distillation loss (MDL-LwF), λ0 = 1 and
the temperature T = 2, achieves an accuracy of 82% in V2I
and approx. 69% in V2V. In this case, LwF is able to achieve
a high accuracy in the V2I test cases but does not perform
well in V2V cases.

Our adapted learning without forgetting with fixed α =
0.005 and training with V2V data and adaptive α outperforms
the previous methods. We found the value for α by a grid
search. We obtain an accuracy of approx. 78% for V2I data
and approx. 80% for V2V data, respectively. For comparison,
we add a portion of the V2I training samples to the V2V
training samples. Already a small portion like 1/50 (222
samples) provide good results in both scenarios, respectively.
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Fig. 3: Combined V2V and V2I accuracy for different α
values.

Further results for different values of α and portions of V2I
training samples are shown in Fig. 3. Fixing α = 0.5 and
taking 1/70 (152 samples) of V2I data yields an combined
accuracy of 81.95%. Lastly, we evaluate the performance
of our adaptive LwF considering old data and without old
data. With a fraction of 1/50 of old data, we obtain slightly
better results, namely 81.96%, than with fixed alpha. These
two methods outperform all the other methods where no or
only partial V2I training data is used. But, here we want
to highlight that A-LwF does not introduce new parameters.
Without partial V2I training, MA-LwF, we achieve a similar
combined accuracy as for MDL-LwF. However, the accuracy
in V2V and V2I are more balanced.

V. CONCLUSION

In this paper, we introduced a CNN that outperforms our
previous work on predicting the FER in V2I scenarios, achiev-
ing an accuracy of 90% with improved accuracy in each FER
class. In this paper, however, we were mainly interested in
investigating methods for training an already trained network
for new scenarios, i.e., V2V scenarios. These methods focus
on low implementation and computational complexity. The
goal was to obtain a high accuracy in the new scenarios
with a small number of new data samples while maintaining
high accuracy in the previously trained scenarios. We showed
that well-established methods such as fine-tuning and transfer
learning do not work well in our case. We further investigated
LwF and proposed changes that reduce or eliminate the need
of additional parameters. The accuracy for both old and new
scenarios, as well as combined scenarios, were compared for
different methods. Finally, we showed that we obtained the
best trade-off with 81.96% combined accuracy for the A-
LwF using 1/50 of the old training dataset. Without any data
from previous scenarios we achieved an combined accuracy
of 75.71%. In both cases only a small number of epochs, 20
to 30, was needed to achieve these results.



Training/Model V2I accuracy [%] V2V accuracy [%] Combined accuracy [%] Number of epochs
MV2I 90.14 56 73.07 100
MV2V 36.2 82.2 59.20 100

MV2V&V2I 92.7 74.57 83.63 100
M2:4 36.62 74.57 55.59 15
M4:5 36.23 78.81 57.52 15
MTFL 33.46 71.18 52.32 15

MDL-LwF 82 69 75.49 20
Mα-LwF, 1/70 V2I 83.40 80.50 81.95 30
MA-LwF, 1/50 V2I 82.57 81.35 81.96 30

Mα-LwF 78.13 79.66 78.90 30
MA-LwF 76 75.42 75.71 20

TABLE III: Summary of Validation performance of the model adaptation methods on the V2V and V2I datasets, respectively.
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