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Abstract—In an world shifting towards wireless communica-
tions, the already scarce electromagnetic spectrum within the
unlicensed bands is becoming increasingly crowded. All wireless
devices operating in those bands need to co-exist without interfer-
ing with each other. Frequency hopping spread spectrum (FHSS)
is a communication technique especially resilient to interference
due to its constant change of the carrier frequency and its
narrowband transmission bandwidth. Furthermore, it produces
minimal interference to other signals in the same frequency band
using wider bandwidth. However, interference can also be harm-
ful even for FHSS transmissions as a result of the loaded ISM
bands. Intelligent spectrum sensing techniques can contribute
to a more efficient spectral usage. In this paper, we propose a
supervised learning algorithm which predicts the future time-
frequency location of a FHSS signal. We design a convolutional
neural network which is trained on a dataset, obtained from
measurements of two FHSS sources. Based only on a small
observation window of 50 ms, it predicts the signal appearance
of the following 25 ms in a time-frequency representation. To
show that we can accurately predict the signal, we introduce a
special score measure. The mean score of about 0.9 with small
standard deviation demonstrates the high fidelity prediction of
the signal’s evolution.

Index Terms—FHSS, frequency hopping, supervised learning,
CNN, pattern prediction

I. INTRODUCTION

Technological advances enable the use of machines to carry
out human activities, reducing risks and costs for people,
society and environment. Unmanned vehicles are among one
of the most proliferating application fields, with a notable
momentum in the aerial set-up with usage in search and rescue
operations, goods delivery or environmental monitoring [1],
just to name a few. These unmanned robots, though human
controlled, often communicate using a command and control
(C2) wireless link in the unlicensed 2.4 GHz ISM frequency
band. The control commands for unmanned aerial vehicles
(UAV5s) require little payload and, given the crowded electro-
magnetic spectrum at this frequency band, it is reasonable that
UAVs adopt a modulation for the C2 link that can be easily
carried in a narrowband signal without suffering the effect of
interference.

Frequency hopping spread spectrum (FHSS) is a wireless
communication scheme characterized by a rapidly changing
(hopping) carrier frequency using narrowband signals within

a wider frequency band. It is well established in the 2.4 GHz
ISM band and adopted by the IEEE 802.15 Standard (Blue-
tooth) and the C2 links of UAVs, among others. In FHSS,
the signal operates on a predefined set of carrier frequencies
{f:}, the respective frequencies are called channels. The order
in which these frequencies are addressed yields the channel
sequence (f;)K,, where K is some integer. In the case of
UAVs, the channel sequence length K is reasonably small,
implying a periodic radio signal, since the catrier reiterates
again through (f;)X , upon completion. This, and the fact that
some UAVs use a certain special type of pattern [2], should
make it possible to predict the UAVs signal evolution.

The biggest advantages of FHSS transmission are the re-
silience to eavesdropping, to jamming, and to the degeneration
of the signal due to unwanted interference. Furthermore, the
risk of a communication failure in the C2 link can cause the
loss of control of a UAV and its fall on an unpredicted (and
maybe populated) area. Therefore, it is crucial to guarantee
an electromagnetic collision free C2 link. In order to improve
the resilience of FHSS signals, it is necessary to provide the
UAVs themselves with a method that allows them to sense
the surrounding spectrum, identify other FHSS signals and, if
possible, negotiate a new frequency pattern for the C2 link
(31, [4].

Extensive literature can be found on the detection of radio
controlled UAVs, as well as on UAV type identification, based
on their respective RF signatures [5]-[7]. Only few literature
investigates the possibilities to identify such FHSS patterns,
or generally of patterns of FHSS based communications, to
allow for precise prediction of the signal evolution. The found
approaches require usually a long scanning of the signal before
any prediction is possible [8], [9]. The work described in [10]
made use of approximately 5 hopping times to identify the
FHSS pattern, which is already a great improvement compared
to the monitoring of channel activities. We propose a similar,
but novel approach in which we require only a small and
fixed observation time to predict the near future evolution
of the FHSS signal. To do so, we use supervised machine
learning (ML) with a convolutional neural network (CNN)
architecture to obtain the signal prediction in a time-frequency
representation. Since we use a time-frequency representation,



we allow for the possibility to actively avoid the signal, or in
contrast, address specifically this signal. To achieve our goal
we proceed as follows: First, we measure the radio signals of
two different FHSS sources, see Sec. II. Second, we present
the dataset construction and the performed preprocessing, the
data labeling and the annotation of the signal regions, see Sec.
III. Third, we outline the training process of the model in
Sec. IV. Fourth and finally, we evaluate in Sec. V, the model
performance on the test set. The scientific contribution of this
work can be summarized as follows:

e We use a time-frequency representation of an FHSS
signal to train a CNN designed to predict the near future
evolution of an FHSS signal, only based on a small
observation window.

o We present a metric assessing the signal prediction qual-
ity. This metric focuses on the informative regions, i.e
regions occupied by the target signal.

o We present the ability of the CNN to recognize two dif-
ferent FHSS patterns, and predict their future evolution.

II. MEASUREMENTS

The two measured FHSS sources were in both cases two
commercially available UAVs, having FHSS as C2C link.
These signals were measured in multiple measurement runs.
The specifc UAVs were:

o A quadcopter DJI Phantom 2330D

o A fixed wing Skywalker EVE-2000 UAV with FrSky

control unit.

We recorded about 5 s of data per measurement run in the
lab with our AIT software-defined-radio testbed [11]. The
measurement bandwidth was set to 80 MHz at a center fre-
quency of 2.44 GHz. The repetition time of the measurement
snapshots was 125 ps, and 512 I/Q samples were obtained
in each snapshot. In the lab there is occasional WiFi coverage
and therefore, it is expected, and desired, to be recorded during
measurements.

Each UAV was measured multiple times in different op-
erating modes as in [12]. The data for the Phantom UAV
was acquired in five measurement runs, where as the for
the Skywalker UAV, we performed three measurement runs.
The discrepancy in the number of measured runs comes
from the fact that Phantom and Skywalker have a different
number of operating modes. We were unable to identify any
difference in the measurements per signal source, i.e. no (if
any existing) effect of the operating modes. We therefore don’t
make any distinction between these individual measurement
runs. Additionally, two measurement runs with RF background
signals of the lab were recorded. This data will also be added
to the training- and test set for two reasons: first, it allows the
supervised learner to not wrongly predict signals if there are
none present, and second, it can give a baseline for the model
performance [2].

III. DATASET CONSTRUCTION

Since we aim for a time-frequency signal prediction, we
process our measurements to be represented with a spectro-
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Fig. 1. Extract of the recorded UAVs. From up to down: Phantom signal,

Skywalker signal, background measurement. Note the sporadic interferences
and note also the difference in the FHSS signal appearance of, e.g. double
hop vs single hop type pattern.

gram. Therefore, we used the fast Fourier transform (FFT)
with 512 samples, on which a Hanning windowed was applied,
to generate a spectrogramic representation of the data. To train
(and test) our supervised model, we fix the dimensionality of
the feature space, i.e. the dimension of the input to the ML
model, as well as those of the target space, i.e. the resulting
output dimension of the ML model. This ultimately boils down
to the FFT size and the desired observation and prediction time
windows.
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Fig. 2. Generation of X-y samples from measurement run.

A. Spectrogram construction

We choose an observation window of 50 ms to predict the
following 25 ms of the FHSS signals. The chosen time lengths
of both input sample X and target samples y are based on the
observed time scales of different FHSS signals, cf. [2] such
that one observes around three signal hops in the output sample
y. An ad hoc choice was made for the observation window
length, we chose the double of the prediction time, this should
guarantee enough information to predict the signals’ evolution.

Therefore, 75 ms worth of measurement data form a X-y
sample. This process was repeated every 5 ms, on each mea-
surement run, resulting in 985 ML samples per measurement
run. After data compression, theses samples have 80 and 40
time stamps X 256 frequency bins for the X and y samples
respectively, with resolutions of 625 s and 0.3125 MHz. The
X-y sample generation procedure is captured in Fig. 2

The samples were source wise normalized to the maximum
recorded energy. Consequently, each time-frequency pixel
takes a value in [0, 1].

B. Annotation

Since we are only interested in the signal’s time-frequency
localization, and not in its exact appearance, we propose here
an annotation procedure to avoid redundant information in the
prediction outcome. This has the additional advantage to speed
up the training process [2].

The annotated y samples are therefore the actual used labels,
to which we refer from now on as y. The annotation procedure
involves a signal detection part followed by a hop rectification.

The signal detection consists of a two step thresholding
scheme. The signal detection scheme requires two user defined
input thresholds 91, 62 and computes y time stamp-wise. The
scheme can be describe as

)

1
Yij = {O
(D

where s; ; € R are the entries of the to be annotated spec-
trogram, with ¢ indexing the time stamps and j the frequency
bins. With the right parameter choices, this scheme shows to
be robust in detecting signals while not detecting any noise.
Table I summarizes the chosen parameters 91, da.

The choice of §; depends on heuristics and on the underly-
ing data, it was designed to filter the noise background. The

if Sij > 61median(si) AN Si 5 > 521’1’121X(Si)
else
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Fig. 3. Annotation of the signal regions. First row shows the original
recording, second row the obtained annotated outcome y. Left column an
example of an Phantom signal, right column the Skywalker signal.

TABLE 1
ANNOTATION PARAMETER

Phantom signal. | Skywalker signal
01 90 125
02 0.5 0.25

second threshold, d» was designed to identify the FHSS signal.
The choice do = 0.5 defines the common full width at half
maximum definition. For the Skywalker UAYV, since the signals
are notably more narrowbanded, we used however do = 0.25,
such that we obtain a wider target area. The resulting binary
matrix encodes signal regions with / and noise regions, as
well as all other (interference) signals of non-interest, with
0. In order to obtain a well defined signal region in both
time and frequency dimension we rectify the signal areas. The
rectification function essentially averages the frequency spread
of each signal region, a detailed description of the rectification
function can be found in [2]. The found approach was found
to be well suited to quickly generate a dataset and was in
the scope of this work, not further improved. A Phantom and
Skywalker example of detected signal pixels and the rectified
version of the spectrogram is shown in Fig. 3.

Since the target y takes only two instances at each entry,
we aim to solve a multivariate binary-classification problem
to perform the signal prediction.

The estimated signal-to-noise ratio (SNR) of the data was
found to be 33.8 dB and 34.5 dB for the Phantom and
Skywalker respectively. The SNR of a X sample was estimated



with

2

X
SNRgg(X) = 101log; ( max(X) ) ;

median(X)

which can be justified by the fact that < 1% of signal pixels
make up a spectrogram. The given SNR estimate for a UAV
is the mean SNR over all respective samples.

Since the background measurements possess no signal of
interest, they were not annotated, but otherwise processed in
the same way as the drone signal measurements.

IV. TRAINING

Convolutional neural networks (CNNs) are a common
choice for model architectures in image recognition problems,
which is also a classification task. To perform our classifica-
tion, we use a 12 layer CNN architecture which is sketched
in Fig. 4. A more detailed explanation of the architecture is
given in [2].

The rough architecture of this model was inspired by
the model presented [6], which was constructed for drone
identification and classification based on the RF signature. Out
of the 12 layers of our CNN, eight are trainable, i.e. model
weights are optimized during the training process. The model
was implemented with Python’s PyTorch library. Note that, by
construction, the model yields a 1D output ¢/, with 3 € R¥,
k = 10240. But it can always be seen as a flattened version
of the 2D target sample y € R40%256 (number of time stamps
x number frequency bins), and as such be reshaped. Thus,
we regard the models output representation, 1D or 2D, as
equivalent.

The small kernel size of two in the convolutional layer was
found to be good in the edge detection, and ultimately in the
future signal prediction. Besides the dropout layer (10), we
used early-stopping as regularization method with a patience
of 30 epochs, [2].

The training and testing sets were obtained by a random 70-
30 split of the respective datasets. Additionally, we defined a
validation set from the training data by segregating randomly
10% from it. Per epoch, the loss on this validation set was
computed to determine the early-stopping point.

Binary cross entropy (BCE) with integrated sigmoid was
used as a loss function for the backpropagation process. Binary
cross entropy is a standard choice for a classification problems.
The integration of the sigmoid function, 1—5-% into BCE is
a feature of the Pytorch library to ensure numerical stability.
With this in mind, the output of the CNN depicted by Fig.
4 yields only the class probability per pixel, if an activation
function, with property to map continuously R — [0,1],
is applied on the individual entries. The model parameter
optimization was performed with mini-batch gradient descent
with a batch size of 30.

V. EVALUATION

After 755 epochs the training was stopped according to the
early-stopping criterion. The criterion compared the average
loss of the past 30 iterations, previous to the average loss
over the patience. In order to quantify the model performance
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Fig. 4. CNN architecture of the constructed model

we propose a specially designed score measure, the LP-score,
named after the authors initials. This score has as image map
R* x R¥ — [0,1], with k& = 10240. It takes as inputs ¥, €
R*, where y is the ground truth and 4 the predicted future
signal appearance. The entries of y are computed element wise,
denoted by the index 4, from the model output ' with

1 if ——, >
y:{ i G)

0 else

We chose p = 0.5 as probability threshold. This threshold
parameter was found to be nearly ideal, and was not further
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optimized. The LP-score is defined as

1 if Vi y;=9;,=0
LP-score(y, ) = ”ﬁl’ﬁ’gu if 30,7 sty; #0,9; #0,
0 otherwise

“4)
where (x, ) denotes the standard scalar product and |[|*]| is
the Euclidean vector norm. This score is a modification of
the correlation matrix distance between two matrices, or their
vectorized representation. The correlation matrix distance was
used in [13], [14] as a measure to quantify the overlap between
two peak regions of two matrices in an otherwise mostly flat
(zero) landscape. The LP-score compares only signal regions,
ignoring true negative instances (regions with no signal of
interest), in the case a target signal is present. In the case if no
signal is present, and the model predicts only its absence, a
score of 1 gets returned. With this score, any model which
randomly guesses a certain number of (possibly grouped)
signal pixels, would yield almost certainly a score of 0. A
slightly better naive approach would be a model which predicts
the absence of signal in any case. This model would then yield
an LP-score equivalent to the number of samples without any
signals, over the amount of total samples, i.e. approximately
0.2 in our case.

Figure 5 shows the LP-score distribution obtained from the
test set. With a mean LP-score of 0.906 and standard deviation
o of 0.081, one can consider the model to be well trained. To
give a qualitative understanding what this score corresponds
to, see Fig. 6 which displays the output of a sample yielding
a score of 0.9 and compares it to the ground truth y. We
found that all background samples were correctly identified to
contain no signals of interest, this contributes to the relatively
high number of samples yielding a score between 0.95 and
1. To differentiate the result better, we asses individually for
both FHSS sources the mean score. It was found to be 0.872
4+ 0.079 for the Phantom signal and 0.905 4 0.057 for the
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Fig. 6. Model output with score 0.9 compared to ground truth. Skywalker
FHSS signal sample from test set.

Skywalker signal, where we use o as error estimate. This was
a first step to check the feasibility of the proposed approach for
different FHSS signals, more data with various FHSS patterns
would be needed to train a more complex model, which is
ultimately able to predict all the different patterns. Care needs
to be taken to construct a balanced dataset, especially if more
complex and longer patterns are under consideration.

With the trained model, the prediction time of the future
FHSS signal evolution is essentially limited by the acquisition
time of 50 ms. Even though our approach provides only a short
time signal estimation, it is by two orders of magnitude faster
than the signal prediction described in [9] which extracts the
entire hopping sequence. The observation window might be
larger in the described approach, than in [15], depending on
the exact hop duration, but posses the advantage of an easier
implementation due to the fixed observation length.

VI. CONCLUSION

In this paper, we described the data acquisition of two
commercially available UAVs, DJI Phantom and Skywalker,
both utilizing FHSS for the command and control link. We
described in detail how data can be processed and labeled to
become suitable for a supervised learning process. A model
with CNN architecture was trained to predict the following
25 ms of the signal in a time-frequency representation based
only on a small observation window of 50 ms. To assess the
model performance, we proposed a special score measure,
based on the correlation distance measure, the LP-score. With
this score, we show a robust prediction of the signal regions,
with mean value of 0.907 and small standard deviation of
0.081. The results are recovered for both distinct FHSS signals
independently.
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